首页> 外文学位 >Formation et caracterisation physico-chimique des complexes ADN/chitosane pour la therapie genique.
【24h】

Formation et caracterisation physico-chimique des complexes ADN/chitosane pour la therapie genique.

机译:用于基因治疗的DNA /壳聚糖复合物的形成和理化特性。

获取原文
获取原文并翻译 | 示例

摘要

Chitosan is a prominent natural polymer used in nonviral gene delivery, due to its biocompatibility and biodegradability. It can condense DNA through electrostatic interactions to form nanoparticles that can be internalized by cells. In the first part of this thesis, the interaction of chitosan with plasmid DNA was investigated as a function of pH, buffer composition, degree of deacetylation (DDA) and molecular weight of chitosan, using isothermal titration microcalorimetry (ITC). The chitosan-DNA interaction was shown to be coupled with proton transfer from the buffer to chitosan. This proton transfer is induced by the strong polyanionic nature of DNA which facilitates the ionization of glucosamines of chitosan upon binding. The measured enthalpy of binding was almost entirely due to the ionization changes of the buffer and of chitosan. The chitosan-DNA binding constant was found in the range of 109-10 10 M-1. The binding constant was pH-dependent and was greater at lower pH due to increased electrostatic attraction to DNA when chitosan is highly charged. The binding constant between chitosan and plasmid DNA was significantly influenced by molecular weight and by DDA. The electrostatic effects were found to dictate the binding of chitosan to DNA. The results of this study provide insights into previously measured dependence of transfection efficiencies of DNA/chitosan complexes on chitosan DDA and molecular weight, where a balance between complex stability and chitosan-DNA binding strength was suggested to play a critical role.;The subsequent part of this thesis treats the characterization of different preparations of DNA/chitosan complexes by the AF4 combined system. Parameters known to influence the transfection efficiency of DNA/chitosan complexes were investigated, including the DNA concentration at mixing, the ratio of chitosan amine to DNA phosphate (N/P) used in the preparations, the chitosan molecular weight, and its degree of deacetylation. We found that all preparations yielded similar ranges of particle hydrodynamic radii (15 ≤ R H ≤ 160 nm) but that differed in size distribution. Either an increase of the DNA concentration at mixing or an increase of chitosan molecular weight generated the formation of a higher fraction of larger particles ( RH > 60 nm) in the dispersions. The dispersions contained a majority of free chitosan in solution that was separated from the nanoparticles and quantified by the AF4 combined system. The free chitosan content was 53 to 92% in dispersions prepared with N/P ratios from 3 to 15, respectively, corresponding to an N/P ratio in the particles that was almost constant (1.3 to 1.6). The accuracy of the free chitosan determination by AF4 was confirmed by ultracentrifugation of the dispersion and analysis of the supernatant. This study reveals the utility of AF4 in the analysis of DNA/polycation dispersions and the importance of quantifying and understanding the role of the free polycation component in these nonviral gene delivery systems.;In the last part of our work, we assessed the stability of DNA/chitosan complexes upon exposure to hyaluronan (HA), chondroitin sulfate (CS), and heparin (Hp). Fluorescence spectroscopy was used and Picogreen was selected as the probe to quantify the release of DNA. Only the highly charged heparin was found to destabilize the DNA/chitosan complexes and release DNA in solution. The ability of the competing polyanions to release DNA from the DNA/chitosan complexes was related to the binding affinities of chitosan with the different negatively charged polyelectrolytes (including DNA). The stability of the DNA/chitosan complexes exposed to heparin increased with chitosan DDA and molecular weight, in agreement with increasing binding affinities previously determined by ITC. Heparin was unable to dissociate the complexes in dispersions with a significant amount of free chitosan. This amount of free chitosan was found to be sufficient for binding to both DNA and heparin. These findings suggest that free polycation can prevent premature dissociation of DNA/polycation complexes upon interactions with anionic components in the extracellular matrix.;We then report a new approach to characterize DNA/polycation complexes using asymmetrical flow field-flow fractionation (AF4) coupled online with UV/Vis spectroscopy, multi-angle light scattering (MALS), and dynamic light scattering (DLS). We demonstrated that this AF4 combined system can provide in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution. The accuracy of the particles sizes was confirmed by comparison with data from batch-mode DLS and scanning electron microscopy. Accurate quantification of unbound polycation can provide insight into the contribution of the free polycation in the process of gene delivery.
机译:壳聚糖由于其生物相容性和生物降解性,是用于非病毒基因递送的杰出天然聚合物。它可以通过静电相互作用凝聚DNA,形成可以被细胞内化的纳米颗粒。在本文的第一部分中,使用等温滴定微量量热法(ITC)研究了壳聚糖与质粒DNA的相互作用随pH,缓冲液组成,脱乙酰化程度(DDA)和壳聚糖分子量的变化。壳聚糖与DNA的相互作用被证明与质子从缓冲液转移到壳聚糖有关。质子转移是由DNA的强聚阴离子性质诱导的,该性质促进结合后壳聚糖葡糖胺的电离。测得的结合焓几乎全部归因于缓冲液和壳聚糖的电离变化。发现壳聚糖-DNA结合常数在109-10 10 M-1的范围内。结合常数是pH依赖性的,并且在壳聚糖带电较高时,由于对DNA的静电吸引力增加,因此在较低的pH时结合常数更大。分子量和DDA对壳聚糖和质粒DNA之间的结合常数有显着影响。发现静电效应决定了壳聚糖与DNA的结合。这项研究的结果提供了对先前测定的DNA /壳聚糖复合物转染效率对壳聚糖DDA和分子量的依赖性的见解,其中建议在复合物稳定性和壳聚糖-DNA结合强度之间的平衡起关键作用。本论文旨在通过AF4组合系统对DNA /壳聚糖复合物的不同制备方法进行表征。研究了已知会影响DNA /壳聚糖复合物转染效率的参数,包括混合时的DNA浓度,制备中使用的壳聚糖胺与DNA磷酸盐的比率(N / P),壳聚糖分子量及其脱乙酰度。我们发现,所有制剂均产生相似范围的颗粒流体动力学半径范围(15≤R H≤160 nm),但粒径分布不同。混合时DNA浓度的增加或壳聚糖分子量的增加都会在分散液中形成更高比例的较大颗粒(RH> 60 nm)。分散液在溶液中包含大多数游离壳聚糖,将其与纳米颗粒分离并通过AF4组合系统定量。在以3/15的N / P比制备的分散体中,游离壳聚糖含量为53-92%,对应于颗粒中的N / P比几乎恒定(1.3-1.6)。通过对分散体进行超速离心和上清液的分析,证实了通过AF4测定游离壳聚糖的准确性。这项研究揭示了AF4在分析DNA /聚阳离子分散体中的实用性以及量化和理解游离聚阳离子成分在这些非病毒基因递送系统中的作用的重要性。在我们的最后一部分,我们评估了AF4的稳定性。暴露于透明质酸(HA),硫酸软骨素(CS)和肝素(Hp)的DNA /壳聚糖复合物。使用荧光光谱法,选择Picogreen作为探针以定量DNA的释放。仅发现高电荷肝素会使DNA /壳聚糖复合物不稳定并在溶液中释放DNA。竞争性聚阴离子从DNA /壳聚糖复合物中释放DNA的能力与壳聚糖与不同的带负电荷的聚电解质(包括DNA)的结合亲和力有关。暴露于肝素的DNA /壳聚糖复合物的稳定性随壳聚糖DDA和分子量的增加而增加,这与ITC先前确定的结合亲和力增加是一致的。肝素不能使分散体中的复合物与大量的游离壳聚糖解离。发现该量的游离壳聚糖足以结合至DNA和肝素。这些发现表明,游离聚阳离子可防止DNA /聚阳离子复合物与细胞外基质中的阴离子成分相互作用而过早解离;然后我们报告了一种新方法,该方法使用在线耦合的不对称流场-流分馏(AF4)表征DNA /聚阳离子复合物。紫外/可见光谱,多角度光散射(MALS)和动态光散射(DLS)。我们证明了这种AF4组合系统可以在一次测量中提供复合物的三个重要物理化学参数:未结合的聚阳离子的量,复合物的流体动力学尺寸及其尺寸分布。通过与分批模式DLS和扫描电子显微镜的数据进行比较,确认了粒径的准确性。对未结合的聚阳离子的准确定量可以提供对游离聚阳离子在基因传递过程中的贡献的深入了解。

著录项

  • 作者

    Ma, Pei Lian.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Chemistry Physical.;Engineering Chemical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号