首页> 外文学位 >Explicit numerical study of aerosol-cloud interactions in boundary layer clouds.
【24h】

Explicit numerical study of aerosol-cloud interactions in boundary layer clouds.

机译:边界层云中气溶胶-云相互作用的显式数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Aerosol-cloud interactions, the mechanisms by which aerosols impact clouds and precipitation and clouds impact aerosols as they are released upon droplet evaporation, are investigated by means of explicit high-resolution (3 km) numerical simulations with the Mesoscale Compressible Community (MC2) model. This model, which is non-hydrostatic and compressible, was extended by including separate continuity equations for dry and activated multi-modal aerosol, and for chemical species. The sources and sinks include: particle activation, solute transfer between drops, generation of extra soluble material in clouds via oxidation of dissolved SO2, and particle regeneration. The cloud processes are represented by an advanced double-moment bulk microphysical parameterization.; Three summertime cases have been evaluated: a marine stratus and a cold frontal system over the Bay of Fundy near Nova Scotia, formed on 1 Sep 1995 and extensively sampled as a part of the Radiation, Aerosol, and Cloud Experiment (RACE); and a continental stratocumulus, formed over the southern coast of Lake Erie on 11 July 2001. The marine stratus and the frontal system have been examined for the effects of aerosol on cloud properties and thoroughly evaluated against the available observations. The frontal system and the continental stratocumulus have been evaluated for the effects of cloud processing on the aerosol spectrum.; The marine stratus simulations suggest a significant impact of the aerosol on cloud properties. A simulation with mechanistic activation and a uni-modal aerosol showed the best agreement with observations in regards to cloud-base and cloud-top height, droplet concentration, and liquid water content. A simulation with a simple activation parameterization failed to simulate essential bulk cloud properties: droplet concentration was significantly underpredicted and the vertical structure of the cloud was inconsistent with the observations. A simulation with a mechanistic parameterization and a bi-modal aerosol, including a coarse mode observed in particle spectra below cloud, showed high sensitivity of droplet concentration to the inclusion of the coarse mode. There was a significant reduction in droplet number relative to the simulation without the coarse mode. A similar change occurred in the precipitating system preceding the stratus formation, resulting in an enhancement of precipitation in the weaker (upstream) part of the system while the precipitation in the more vigorous (downstream) part of the system remained almost unaffected.; Aerosol processing via collision-coalescence and aqueous chemistry in the non-drizzling stratocumulus case suggests that impact of the two mechanisms is of similar magnitude and can be as large as a 3-5 % increase in particle mean radius. A more detailed analysis reveals that the impact of chemical processing is oxidant-limited; beyond times when the oxidant (H 2O2) is depleted (∼ 40 minutes), the extent of processing is determined by supply of fresh oxidant from large-scale advection (fresh gaseous emissions are not considered). Aerosol processing via drop collision-coalescence alone suggests, as expected, sensitivity to the strength of the collection process in clouds. Larger particle growth, up to 5-10 %, is observed in the case of the frontal clouds, which exhibit stronger drop collection compared to that in the stratocumulus case. The processed aerosol exerted a measurable impact on droplet concentrations and precipitation production in the frontal clouds. For the case modeled here, contrary to expectations, the processed spectrum (via physical processing) produced higher droplet concentration than the unprocessed spectrum. The reasons explaining this phenomenon and the resulting impact on precipitation production are discussed.; The current work illustrates the complexity of the coupled system at the cloud system scales, revealed earlier at much smaller large eddy scales. If future parameterizations
机译:通过使用中尺度可压缩群落(MC2)模型进行的高分辨率高分辨率(3 km)数值模拟,研究了气溶胶-云相互作用(气溶胶影响云,降水和云影响气溶胶在液滴蒸发时释放的机理)。 。该模型是非静液压的,并且是可压缩的,通过包括用于干燥和活化的多峰气溶胶以及用于化学物质的单独的连续性方程进行了扩展。源和汇包括:粒子活化,液滴之间的溶质转移,通过溶解的SO2的氧化在云中生成额外的可溶物质以及粒子再生。云的过程以先进的双时刻整体微物理参数化为代表。评估了三个夏季案例:1995年9月1日形成的新斯科舍附近芬迪湾上的海相地层和冷锋系统,并作为辐射,气溶胶和云实验(RACE)的一部分进行了广泛采样; 2001年7月11日,在伊利湖南部海岸形成了大陆平流层积云。已经检查了海洋地层和额叶系统对气溶胶对云特性的影响,并根据现有观测资料进行了全面评估。已评估了额叶系统和大陆平流层积云对云处理对气溶胶光谱的影响。海洋地层模拟表明,气溶胶对云的性质有重大影响。具有机械活化和单峰气溶胶的模拟结果表明,在云基高度和云顶高度,液滴浓度和液态水含量方面,与观测值最吻合。具有简单激活参数化的模拟无法模拟基本的块状云特性:液滴浓度明显低估了,云的垂直结构与观测值不一致。具有机械参数化和双峰气溶胶的模拟(包括在云下面的粒子光谱中观察到的粗模式)显示,液滴浓度对包含粗模式非常敏感。相对于没有粗模式的模拟,液滴数量显着减少。类似的变化发生在地层形成之前的降水系统中,导致系统较弱(上游)部分的降水增加,而系统较活跃(下游)部分的降水几乎不受影响。在非滴水平积层中,通过碰撞聚结和水化学过程进行的气溶胶处理表明,这两种机理的影响程度相似,并且粒子平均半径可能会增加3-5%。更详细的分析表明,化学处理的影响是有限的。在氧化剂(H 2 O 2)耗尽的时间(约40分钟)之后,处理程度取决于大规模对流提供的新鲜氧化剂(不考虑新鲜气体排放)。如预期的那样,仅通过液滴碰撞-凝聚进行的气溶胶处理就暗示了对云中收集过程强度的敏感性。在额云的情况下,观察到较大的颗粒生长,高达5-10%,与平流积云的情况相比,它们表现出更强的液滴收集能力。经过处理的气雾剂对额叶云中的液滴浓度和降水量产生了可测量的影响。对于此处建模的情况,与预期相反,经过处理的光谱(通过物理处理)产生的液滴浓度高于未处理的光谱。讨论了解释这种现象的原因及其对降水产生的影响。当前的工作说明了在云系统规模上耦合系统的复杂性,这在更早的较小的大型涡流规模中已得到揭示。如果将来进行参数化

著录项

  • 作者

    Paunova, Irena T.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号