首页> 外文学位 >Following electron flow: From a Gram-positive community to mechanisms of electron transfer.
【24h】

Following electron flow: From a Gram-positive community to mechanisms of electron transfer.

机译:跟随电子流动:从革兰氏阳性群落到电子转移机理。

获取原文
获取原文并翻译 | 示例

摘要

Research endeavors are committed to the optimization and function of microbial fuel cells (MFCs), with most efforts largely dedicated towards increasing power density by optimizing physical parameters. For MFCs to achieve their potential knowledge of the microbiological factors controlling current production is essential. The research within this dissertation characterizes the electrochemistry (Chapter 2), ecology (Chapter 3), and physiology (Chapter 4) of bacterial current production.;MFCs inoculated with thermophilic anaerobic digester were constructed and operated at 55°C for 100 days. Electrochemical performance was well replicated within the reactors (Chapter 2). Over the experimental period, current was continuous, averaging 0.57 mA (100 mA.m-2) with a mean electron recovery of 89% and maximum power output of 37 mW.m -2. Relative to similarly constructed mesophilic MFCs thermophilic MFCs may offer increased electrochemical performance with elevated current production, coulombic efficiency, and power generation. Not only does this detailed electrochemical description demonstrate that MFC technology is compatible with elevated temperature waste streams, but also functions a benchmark for future comparative studies.;To assess bacterial composition and function of anode biofilm communities we used two complementary approaches: a novel high-density oligonucleotide microarray (PhyloChip) and clone library sequencing (Chapter 3). Within the anode bacterial community, active members were distinguished from persistent members by monitoring 16S rRNA in addition to cataloging 16S rRNA gene presence. Nucleic acids from a no-acetate control (no electron donor), open circuit control (no electron acceptor), and the initial inoculum were extracted to verify community membership on current producing anodes.;To link the phylogeny with functional current production, we complemented 16S rRNA approaches with isolation of pure cultures. Several bacteria representing three genera, Thermincola, Geobacillus, and Coprothermobacter were isolated from the MFC anode (Chapter 3). These genera contain three of the five most dominant members of the anode community and collectively represent 39% of the clone library sequence diversity. Both Firmicutes isolates, Thermincola potens strain JR and Geobacillus sp. strain S2E, are of great interest given their enrichment from the initial inoculum and their ability to reduce solid phase iron, or hydrous ferric oxide (HFO). Interestingly, while both isolates reduced HFO coupled to acetate oxidation, only Thermincola potens strain JR could generate current independently with acetate as an electron donor. Strain JR generated an average of 0.42 mA in two separate experiments with a coulombic efficiency of 91%, similar to that observed for the original complex community (89%).;A combination of physiological, electrochemical and imaging methods support the hypothesis that Thermincola sp. strain JR does not produce an electron shuttling compound but requires direct contact for current production. These results, along with cryo-electron microscopy (cryo-EM), suggest that Thermincola potens strain JR directly transfers electrons from the cell membrane across the 37nm cell envelope to the cell surface. Analogous to direct electron transfer by Gram-negative organisms, physiological and genomic evidence suggests that direct extracellular electron transfer in Gram-positive bacteria is mediated by periplasmic and cell wall associated c-type cytochromes. Together, these results are the first to implicate a role for c-type cytochromes in direct extracellular electron transfer by Gram-positive bacteria (Chapter 4).;This dissertation follows electron flow in MFCs operated at 55°C to reveal a novel physiological role for Gram-positive Firmicutes within current-producing anode communities. As a result of this dissertation, an option now exists for efficient MFC current-production at elevated temperature, two novel anode-respiring bacteria have been isolated, independent electricity generation by Gram-positive bacteria has been demonstrated, the genome of one of these isolates has been sequenced, and the molecular mechanism of electron transfer by a Gram-positive anode respiring bacterium elucidated. (Abstract shortened by UMI.)
机译:研究工作致力于微生物燃料电池(MFCs)的优化和功能,其中大部分工作主要致力于通过优化物理参数来提高功率密度。为了使MFC掌握控制当前生产的微生物因素的潜在知识,这一点至关重要。本论文的研究以细菌电流产生的电化学(第2章),生态学(第3章)和生理学(第4章)为特征。构建了用嗜热厌氧消化器接种的MFC,并在55℃下操作了100天。电化学性能在反应器中得到了很好的复制(第2章)。在实验期间,电流是连续的,平均为0.57 mA(100 mA.m-2),平均电子回收率为89%,最大功率输出为37 mW.m -2。相对于类似构造的中温MFC,嗜热MFC可以提供更高的电化学性能,并具有更高的电流产生,库仑效率和发电量。这种详细的电化学描述不仅表明MFC技术与高温废料流兼容,而且还为将来的比较研究提供了基准。为了评估阳极生物膜群落的细菌组成和功能,我们使用了两种互补的方法:密度寡核苷酸微阵列(PhyloChip)和克隆文库测序(第3章)。在阳极细菌群落内,除了对16S rRNA基因的存在进行分类外,还通过监测16S rRNA将活跃成员与持久成员区分开。从无乙酸盐对照(无电子供体),开路对照(无电子受体)和初始接种物中提取核酸,以验证电流产生阳极上的群落成员身份。为了将系统发育与功能性电流产生联系起来,我们补充了分离纯培养物的16S rRNA方法。从MFC阳极中分离出代表Thermincola,Geobacillus和Coprothermobacter三种属的几种细菌(第3章)。这些属包含阳极群落的五个最主要成员中的三个,共同代表克隆文库序列多样性的39%。两种Firmicutes分离株,Thermincola potens菌株JR和Geobacillus sp。鉴于菌株S2E可以从最初的接种物中富集,并且具有还原固相铁或含水三氧化二铁(HFO)的能力,因此引起了极大的兴趣。有趣的是,尽管两个分离株都还原了与乙酸盐氧化有关的HFO,但只有Thermincola potens菌株JR才能以乙酸盐作为电子供体独立产生电流。在两个单独的实验中,JR菌株平均产生0.42 mA的电量,库仑效率为91%,与原始复杂群落的观测值(89%)相似。生理,电化学和成像方法的结合支持了Thermincola sp 。 JR菌株不会产生电子穿梭化合物,但需要直接接触才能产生电流。这些结果以及低温电子显微镜(cryo-EM)提示,Thermincola potens菌株JR将电子从细胞膜直接转移到整个37nm细胞膜的细胞表面。类似于革兰氏阴性生物体的直接电子转移,生理和基因组学证据表明,革兰氏阳性菌中直接的细胞外电子转移是由周质和细胞壁相关的c型细胞色素介导的。总之,这些结果首次暗示了c型​​细胞色素在革兰氏阳性细菌直接向细胞外电子转移中的作用(第4章)。用于产生电流的阳极群落中的革兰氏阳性菌毛。作为本论文的结果,现在存在在高温下有效产生MFC电流的选择,已分离出两种新颖的阳极呼吸细菌,已证明革兰氏阳性细菌独立发电,这些分离物中的一种的基因组已经测序,并阐明了革兰氏阳性阳极呼吸细菌电子转移的分子机制。 (摘要由UMI缩短。)

著录项

  • 作者

    Wrighton, Kelly Catherine.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号