首页> 外文学位 >Characterization of putative magnesium transport systems in yeast.
【24h】

Characterization of putative magnesium transport systems in yeast.

机译:酵母中假定的镁转运系统的表征。

获取原文
获取原文并翻译 | 示例

摘要

Magnesium (Mg2+) is essential for all life, and is utilized for many important biological processes. All cells must maintain an appropriate concentration of Mg2+ in the cytosol and within organelles in order to maintain key biological processes such as transcription and translation. Despite the fundamental importance of Mg2+ homeostasis, relatively little is known about homeostasis in eukaryotic cells. The goal of this work was to identify membrane transport systems that may be involved in the active transport of Mg2+, using Saccharomyces cerevisiae as a model organism. Although a variety of Mg2+ influx systems have been described, proteins mediating active transport of Mg2+ (which are essential to prevent the overaccumulation of cytosolic Mg 2+) have not been identified from any organism. In yeast, a vacuolar Mg2+/H+ exchange activity has been described, but the molecular identify of this protein is not known. To try and identify this activity, a candidate gene approach was used. Four yeast genes of unknown function (PER1, YNL321w, YDL206w, and YJR106w) were screened for phenotypic effects on Mg2+ homeostasis when overexpressed or deleted. PER1 encodes a membrane protein that is essential for growth in high Mg2+ concentrations. YNL321w, YDL206w, and YJR106w are members of the CaCA (calcium/cation antiporter) superfamily, members of which transport a variety of divalent metal cations via a cation/proton exhange mechanism. Experiments to determine the function of Per1 showed that overexpression of this gene did not affect the Mg2+ content of yeast, but the per1 mutation did reduce Mg2+ content. However, information communicated from another research group indicated that this effect was not specific to Mg2+. In addition, Per1 was subsequently identified by another research group as an ER protein mediating a step in the pathway for Franklin, glycosylphosphatidylinositol (GPI) anchor synthesis. Of the three remaining candidate proteins, only one (Ynl321w) produced a significant increase in intracellular Mg2+ content when overexpressed. However, the ynl321w deletion mutation did not alter Mg 2+ accumulation, Mg2+ tolerance, or tolerance to a range of other potentially toxic cations. Combining the ynl321w mutation with knockout mutations in the other two CaCA proteins also did not affect metal tolerance, indicating that these proteins do not have a redundant function. However, the ynl321w mutant did show a slight sensitivity to a high Ca2+ concentration (700 mM). As a result of this, I screened for other Ca2+ related phenotypes in ynl321w mutants, alone and when combined with other mutations that disrupt Ca2+ homeostasis. I observed that when combined with ynl321w, vcx1 and pmc1 mutations displayed synthetic Ca2+ sensitivity phenotypes. Measurement of cellular Ca 2+ content with AAS showed that the ynl321w mutation was associated with an increase in Ca2+ content, and that this effect that was still observed in vcx1 or pmc1 backgrounds, indicating it was independent of vacuolar Ca2+ storage. Thus, these findings suggest a role for Ynl321w in Ca2+ secretion from the cell via the secretory pathway or plasma membrane. Localization studies using fluorescence microscopy and sucrose gradient fractionation showed that Ynl321wp to be localized to the ER membrane. As a consequence of these observations, I propose that Ynl321w may perform a similar function to Pmr1p, a P-type ATPase that transports Ca2+ and Mn2+ into the Golgi (and eventually, releases the ion to the external environment). Therefore, I renamed the Ynl321w protein Ecx1 (for E&barbelow;R c&barbelow;alcium ex&barbelow;changer). The identification of Ecx1 is the first described example of a CaCA protein participating in Ca2+ homeostasis within the secretory pathway. Although the work did not provide insight into the molecular mechanisms of Mg2+, it did identify a factor in Ca 2+ homeostasis.
机译:镁(Mg2 +)对于所有生命都是必不可少的,并被用于许多重要的生物过程。所有细胞必须在细胞质和细胞器内维持适当浓度的Mg2 +,以维持关键的生物学过程,例如转录和翻译。尽管Mg2 +稳态具有根本的重要性,但对真核细胞中的稳态知之甚少。这项工作的目的是使用酿酒酵母作为模型生物,确定可能参与Mg2 +主动转运的膜转运系统。尽管已描述了多种Mg2 +内流系统,但尚未从任何生物中鉴定出介导Mg2 +主动转运(对防止胞质Mg 2+过度积累必不可少的蛋白质)的蛋白质。在酵母中,已经描述了液泡的Mg2 + / H +交换活性,但是该蛋白的分子鉴定尚不清楚。为了尝试鉴定这种活性,使用了候选基因方法。当过表达或缺失时,筛选了四个功能未知的酵母基因(PER1,YNL321w,YDL206w和YJR106w)对Mg2 +稳态的表型效应。 PER1编码一种在高Mg2 +浓度下生长必不可少的膜蛋白。 YNL321w,YDL206w和YJR106w是CaCA(钙/阳离子反转运体)超家族的成员,它们的成员通过阳离子/质子交换机制转运各种二价金属阳离子。确定Per1功能的实验表明,该基因的过表达不会影响酵母中Mg2 +的含量,但per1突变确实会降低Mg2 +的含量。但是,从另一个研究小组获得的信息表明,这种效应并非特定于Mg2 +。此外,Per1随后被另一个研究小组鉴定为ER蛋白,是一种介导富兰克林糖基磷脂酰肌醇(GPI)锚定合成途径中的一步的ER蛋白。在剩余的三个候选蛋白质中,只有一个(Ynl321w)在过表达时会产生细胞内Mg2 +含量的显着增加。但是,ynl321w缺失突变不会改变Mg 2+的积累,Mg2 +的耐受性或对一系列其他潜在毒性阳离子的耐受性。将其他两种CaCA蛋白中的ynl321w突变与敲除突变结合起来也不会影响金属耐受性,表明这些蛋白没有多余的功能。但是,ynl321w突变体确实对高Ca2 +浓度(700 mM)表现出了轻微的敏感性。结果,我筛选了ynl321w突变体中其他与Ca2 +相关的表型,单独或与破坏Ca2 +体内稳态的其他突变结合时进行了筛选。我观察到,与ynl321w结合使用时,vcx1和pmc1突变显示出合成的Ca2 +敏感性表型。用AAS测量细胞中Ca 2+的含量表明ynl321w突变与Ca2 +含量的增加有关,并且这种效应仍在vcx1或pmc1背景中观察到,表明它与液泡Ca2 +的储存无关。因此,这些发现表明Yn1321w在通过分泌途径或质膜从细胞中分泌Ca 2+的作用。使用荧光显微镜和蔗糖梯度分级法进行的定位研究表明,Ynl321wp定位于ER膜。由于这些观察结果,我建议Ynl321w可能执行与Pmr1p类似的功能,Pmr1p是一种将Ca2 +和Mn2 +转运到高尔基体中的P型ATPase(最终将离子释放到外部环境中)。因此,我将Ynl321w蛋白Ecx1重命名为Ecbar1(对于Alcium ex&barer)。 Ecx1的鉴定是第一个描述的CaCA蛋白参与分泌途径内Ca2 +稳态的例子。尽管这项工作没有提供有关Mg2 +分子机制的见解,但确实确定了Ca 2+稳态的一个因素。

著录项

  • 作者

    Franklin, Andrew J.;

  • 作者单位

    University of Missouri - Saint Louis.;

  • 授予单位 University of Missouri - Saint Louis.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 M.S.
  • 年度 2007
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 土壤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号