首页> 外文学位 >Synthesis of inorganic nanowires by using peptide nanotubes as the templates via biologic recognition.
【24h】

Synthesis of inorganic nanowires by using peptide nanotubes as the templates via biologic recognition.

机译:通过肽纳米管作为模板通过生物识别合成无机纳米线。

获取原文
获取原文并翻译 | 示例

摘要

Nanomaterials and nanoscale engineering will play a critical role in the future of materials science, electronic technology and biotechnology. Inspired by nature, biomineralization is becoming an important technique to synthesize inorganic nanomaterials. This is a recognization process which is based on molecular complementarity between protein and specific crystal phases of metals or semiconductors. This approach can produce nanomaterials with precisely controlled morphology and crystalline structure under mild conditions. In this dissertation, sequenced histidine-rich peptides are used to fabricate morphology-controlled nanocrystals on the surface. Various inorganic nanocrystals are produced accurately, efficiently and reproducibly by choosing different peptide sequences for different metals. Biomineralization of nanotubes is achieved by incorporating these sequenced histidine-rich peptides onto templated peptide nanotubes. The biological recognition of the specific peptide sequences toward particular metals and semiconductor leads to the efficient coatings of such inorganic nanocrystals as Ag, Pt, Cu, Ni and ZnS on the nanotubes. This method allows for the synthesis of nanotubes uniformly coated by highly crystalline metal nanocrystals with a high-density surface coverage. It has been demonstrated that the size, shape and packing density of the nanocrystals can be regulated via changes in the pH of the solution, which leads to conformational changes in the peptide. By this means, different inorganic nanowires can be synthesized with tunable surface morphology which results in tunable physical properties that could be used as the building blocks for the fabrication of nanodevices.
机译:纳米材料和纳米工程将在材料科学,电子技术和生物技术的未来中发挥关键作用。受自然启发,生物矿化正成为合成无机纳米材料的重要技术。这是基于蛋白质与金属或半导体的特定晶相之间的分子互补性的识别过程。这种方法可以在温和条件下生产具有精确控制的形态和晶体结构的纳米材料。本文采用测序的富组氨酸富集肽在表面上制备形态可控的纳米晶体。通过为不同的金属选择不同的肽序列,可以准确,高效和可重复地生产出各种无机纳米晶体。纳米管的生物矿化是通过将这些序列化的富含组氨酸的肽掺入模板化的肽纳米管而实现的。对特定肽序列针对特定金属和半导体的生物识别导致在纳米管上有效地涂覆了诸如Ag,Pt,Cu,Ni和ZnS的无机纳米晶体。该方法允许合成由具有高密度表面覆盖的高度结晶的金属纳米晶体均匀涂覆的纳米管。已经证明可以通过溶液pH的变化来调节纳米晶体的尺寸,形状和堆积密度,这导致肽的构象变化。通过这种方法,可以合成具有可调表面形态的不同无机纳米线,从而产生可调谐的物理特性,这些物理特性可用作制造纳米器件的基础。

著录项

  • 作者

    Yu, Lingtao.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号