首页> 外文学位 >Study of the (+)-pisatin biosynthetic pathway by RNAi and development of a novel method to elicit the production of plant secondary metabolites.
【24h】

Study of the (+)-pisatin biosynthetic pathway by RNAi and development of a novel method to elicit the production of plant secondary metabolites.

机译:RNAi研究(+)-角蛋白生物合成途径,并开发出一种引发植物次生代谢产物的新方法。

获取原文
获取原文并翻译 | 示例

摘要

(+)-Pisatin, ([+]-[6aR,11aR]-6a-hydroxy-3-methoxy-8,9-methylenedioxypterocarpan) is the major phytoalexin of the garden pea (Pisum sativum L.). Despite being the first phytoalexin to be chemically characterized, its biosynthesis remains to be fully elucidated. RNA-mediated genetic interference (RNAi) was used to gain further insights into the (+)-pisatin biosynthetic pathway. The expression of three genes, isoflavone reductase (IFR ) catalyzing the reduction of 7,2'-dihydroxy-4',5'-methylenedioxyisoflavone to (-)-sophorol, sophorol reductase (SOR) involved in reducing (-)-sophorol to (-)-7,2'-dihydroxy-4',5'-methylenedioxyisoflavanol and hydroxymaackiain-3- O methyltransferase (HMM) involved in methylation of (+)-6a-hydroxymaackiain to (+)-pisatin was silenced. The genes are transcriptionally co-regulated during (+)-pisatin biosynthesis, with the IFR and SOR proposed to function upstream of the HMM gene.; Hairy roots expressing the HMM RNAi construct, deficient in (+)-pisatin biosynthesis were identified. However, these did not accumulate (+)-6a-hydroxymaackiain, precursor to (+)-pisatin. Instead they accumulated 2,7,4'-trihydroxyisoflavanone, daidzein, liquiritigenin and isoformononetin. The amino acid sequence of HMM is very similar to that of another methyltransferase, hydroxyisoflavanone-4'-O-methyltransferase (HI4'MOT), found in most legumes. HI4'MOT catalyzes the methylation of 2,7,4'-trihydroxyisoflavanone (THI) to 2,7-dihydroxy-4'-methoxyisoflavanone, one of the earliest enzymatic steps in isoflavonoid biosynthesis. In pea, HI4'OMT may be the same enzyme as "HMM" catalyzing the methylation of both THI and (+)-6a-hydroxymaackiain. Preventing the methylation of THI could divert pea intermediates to the production of daidzein and isoformononetin instead of (+)-pisatin.; None of the transgenic hairy roots expressing the IFR RNAi construct were totally deficient in (+)-pisatin biosynthesis. However, all produced reduced amounts of (+)-pisatin, with one culture accumulating 7,2'-dihydroxy-4',5'-methylenedioxyisoflavone, the substrate for IFR. Hairy roots expressing the SOR RNAi construct deficient in (+)-pisatin biosynthesis were identified. These accumulated (-)-sophorol, the substrate for SOR. These data provide evidence for the involvement of these genes and the intermediates with (-)-optical activity in (+)-pisatin biosynthesis.; The elicitation of the biosynthesis of secondary metabolites in plant cell and tissue cultures by electric current was explored. Electric current was demonstrated to elicit the biosynthesis of secondary metabolites in pea hairy and intact roots, seedling, root and cell suspension cultures of various plant species. Electric current has potential for use as an elicitor of secondary metabolites in basic and commercial research ventures.
机译:(+)-Pisatin,([+]-[6aR,11aR] -6a-羟基-3-甲氧基-8,9-亚甲基二氧基翼果烷)是豌豆(Pisum sativum L.)的主要植物抗毒素。尽管是第一个被化学鉴定的植物抗毒素,但其生物合成仍有待充分阐明。 RNA介导的遗传干扰(RNAi)用于获得(+)-角蛋白生物合成途径的进一步见解。三种基因的表达,异黄酮还原酶(IFR)催化将7,2'-二羟基-4',5'-亚甲基二氧基异黄酮还原为(-)-槐定酚,槐定酚还原酶(SOR)参与将(-)-槐定酚还原为使(-)-7,2'-二羟基-4',5'-亚甲基二氧基异黄烷醇和羟基麦肯酸-3-O甲基转移酶(HMM)参与(+)-6a-羟基麦肯酸甲基化为(+)-芥末素。在(+)-角蛋白素生物合成过程中,这些基因在转录上受到共同调控,IFR和SOR被认为在HMM基因的上游起作用。鉴定出表达(+)-角蛋白生物合成缺乏的表达HMM RNAi构建体的毛状根。但是,这些没有积聚(+)-芥末的前体(+)-6a-羟基黄果苷。相反,他们积累了2,7,4'-三羟基异黄酮,大豆苷元,皂苷元和异甲酮。 HMM的氨基酸序列与大多数豆科植物中发现的另一种甲基转移酶羟基异黄烷酮4'-O-甲基转移酶(HI4'MOT)的氨基酸序列非常相似。 HI4'MOT催化2,7,4'-三羟基异黄酮(THI)甲基化为2,7-二羟基-4'-甲氧基异黄酮,这是异黄酮生物合成中最早的酶促步骤之一。在豌豆中,HI4'OMT可能是与“ HMM”相同的酶,可催化THI和(+)-6a-羟基maackiain的甲基化。防止THI的甲基化可将豌豆中间体转移到大豆苷元和异福宁酮而不是(+)-芥末素的生产上。表达IFR RNAi构建体的转基因毛状根中没有一个在(+)-芥末素生物合成中完全缺乏。然而,所有产生的减少量的(+)-角蛋白,一种培养物积累了7,2'-二羟基-4',5'-亚甲基二氧基异黄酮,这是IFR的底物。鉴定出表达(+)-角蛋白生物合成不足的SOR RNAi构建体的毛状根。这些积累的(-)-槐糖酚,SOR的底物。这些数据提供了这些基因和具有(-)-光学活性的中间体参与(+)-芥末素生物合成的证据。探索了通过电流激发植物细胞和组织培养物中次生代谢产物的生物合成。电流被证明可以诱导各种植物物种的豌豆毛状和完整的根,幼苗,根和细胞悬浮培养物中次级代谢产物的生物合成。电流有可能在基础研究和商业研究中用作引发次级代谢产物的诱因。

著录项

  • 作者

    Kaimoyo, Evans.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Agriculture Plant Pathology.; Biology Plant Physiology.; Chemistry Biochemistry.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物病理学;植物学;生物化学;分子遗传学;
  • 关键词

  • 入库时间 2022-08-17 11:39:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号