首页> 外文学位 >Development of a controller for fermentation in the dry grind corn process.
【24h】

Development of a controller for fermentation in the dry grind corn process.

机译:开发了用于干磨玉米过程中发酵的控制器。

获取原文
获取原文并翻译 | 示例

摘要

The dry grind process is used to produce about two thirds of total U.S. fuel ethanol. The simultaneous saccharification and fermentation (SSF) is the most important unit operation in the dry grind corn process. At present, static controllers that do not respond to changing conditions during the SSF process are used to control SSF in most dry grind plants. Use of optimal controllers based on continuous process measurements can provide performance improvements by dynamically optimizing the fermentation conditions. A controller for the SSF process was developed based on models for starch hydrolysis, yeast metabolism and metabolic flux analysis for yeast. To optimize the SSF process, the controller utilized temperature, pH, glucose, maltose, maltotriose, glycerol, ethanol and organic acid measurements to regulate the temperature, pH and glucoamylase dose.; Starch structure (amylose and amylopectin) was modeled using a cluster model. Modeled molecules were used to simulate liquefaction and saccharification processes. A cybernetic model for yeast metabolism was developed. The yeast metabolism model simulations over a range of temperature, pH, organic acids, initial inoculum levels and initial glucose concentrations conformed to hypothesized trends and to observations from other researchers. Simulations converged to expected results and exhibited continuity in predictions for all ranges of variables simulated. The control problem was formulated as a scalar performance criteria minimization and was solved using an iterative algorithm based on steepest descent technique. A fermentation system was built and calibrated.; The controller maintained glucose concentration of 2.0% w/v in the fermenter throughout the SSF process. Reduced glucose concentrations minimize the osmotic shock to yeast and inhibit the growth of other competing microorganisms. Use of the optimal controller resulted in 50% reduction in glucoamylase amount required for the SSF process under varying operating conditions as compared to the standard SSF process. Optimal controller significantly improved final ethanol concentrations as compared to the conventional process without optimal controller under conditions of temperature and pH disturbances. Use of the optimal controller in conventional dry grind ethanol processes can result in estimated cost savings up to {dollar}1 million for a 151 million L/yr (40 million gal/yr) dry grind plant.
机译:干磨法用于生产美国燃料乙醇总量的约三分之二。同步糖化和发酵(SSF)是干磨玉米过程中最重要的单元操作。目前,在大多数干磨设备中,在SSF过程中不响应条件变化的静态控制器可用于控制SSF。基于连续过程测量的最佳控制器的使用可以通过动态优化发酵条件来提高性能。基于淀粉水解,酵母代谢和酵母代谢通量分析的模型,开发了SSF过程的控制器。为了优化SSF工艺,控制器利用温度,pH,葡萄糖,麦芽糖,麦芽三糖,甘油,乙醇和有机酸的测量值来调节温度,pH和葡糖淀粉酶的剂量。使用聚类模型对淀粉结构(直链淀粉和支链淀粉)进行建模。建模的分子用于模拟液化和糖化过程。建立了酵母代谢的控制论模型。在一定温度,pH,有机酸,初始接种量和初始葡萄糖浓度范围内进行的酵母代谢模型模拟符合假设趋势和其他研究人员的观察结果。模拟收敛到预期结果,并且在模拟变量的所有范围的预测中都具有连续性。控制问题被公式化为标量性能标准最小化,并使用基于最速下降技术的迭代算法解决。建立了发酵系统并进行了校准。在整个SSF过程中,控制器在发酵罐中的葡萄糖浓度保持在<2.0%w / v。降低的葡萄糖浓度使对酵母的渗透压减至最小,并抑制了其他竞争微生物的生长。与标准SSF工艺相比,在不同的操作条件下,使用最佳控制器可使SSF工艺所需的葡糖淀粉酶量减少50%。与在温度和pH干扰条件下没有最佳控制器的常规方法相比,最佳控制器显着提高了最终乙醇浓度。在传统的干磨乙醇工艺中使用最佳控制器可以为1.51亿升/年(4000万加仑/年)的干磨设备节省高达100万美元的成本。

著录项

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;
  • 关键词

  • 入库时间 2022-08-17 11:39:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号