首页> 外文学位 >Biochemical and biophysical characterization of the manganese transport regulator (MntR) from Bacillus subtilis.
【24h】

Biochemical and biophysical characterization of the manganese transport regulator (MntR) from Bacillus subtilis.

机译:枯草芽孢杆菌中锰转运调节剂(MntR)的生化和生物物理表征。

获取原文
获取原文并翻译 | 示例

摘要

Metal ions are employed in biology for several reasons including their ability to participate in redox chemistry, catalysis, and structural stabilization of proteins. However, the properties that make metal ions so widely utilized in biology can be potentially hazardous, particularly if abnormal quantities of these ions are accumulated. This necessitates a mechanism by which the balance between uptake of essential metal ions and efflux of excess essential or toxic metal ions, otherwise referred to as metal homeostasis, can be maintained. Bacteria employ a unique set of metal responsive transcription factors (metalloregulators) to manage this delicate balance.; The biochemical and biophysical characterization of MntR, a manganese responsive regulator from the DtxR family is the focus of this thesis. Fluorescence anisotropy was used to probe the DNA-binding of wild type MntR, MntR D8M, and MntR E99C mutants to the cognate DNA recognition sequences mntH and mntA in the presence of various divalent metal ions. Our studies demonstrate the extent to which these metal ions are able to activate MntR to bind DNA. In addition, these studies shed light on the origin of metal specificity between MntR and DtxR and are in agreement with in vivo data reported in the literature.; In addition to investigating the DNA-binding abilities of MntR, we also examined the metal binding affinities of this protein in order explain how it fits into the DtxR family and the general field of metalloregulatory proteins. The results demonstrate that MntR metal-binding affinities loosely follow the Irving-Williams series. Interestingly, the protein exhibits the weakest affinity for one of its cognate metal ions.; Finally, the metal-mediated mechanism of DNA binding by MntR was studied. Initial investigations using circular dichroism and an environmentally-sensitive dye ANS showed that metal binding stabilizes either tertiary or quaternary structure of MntR. Subsequent studies focused on localizing these structural changes using deuterium exchange mass spectrometry (DXMS) and demonstrated that metal-binding serves to rigidify the pre-organized structure of MntR. Moreover, contrary to typical observation of transcription factors, cofactor (metal) binding does not appear to alter the structure of helix-turn-helix DNA-binding motif.
机译:金属离子由于多种原因而在生物学中被采用,包括它们参与氧化还原化学,催化和蛋白质结构稳定的能力。但是,使金属离子在生物学中得到如此广泛利用的特性可能具有潜在的危险,特别是如果这些离子的异常量累积时。这需要一种机制,通过该机制可以维持必需金属离子的吸收与过量必需或有毒金属离子(也称为金属稳态)的外流之间的平衡。细菌利用一组独特的金属响应转录因子(metalloregulators)来控制这种微妙的平衡。 DntxR家族的锰响应调节剂MntR的生物化学和生物物理特性是本论文的重点。在各种二价金属离子存在下,使用荧光各向异性来探测野生型MntR,MntR D8M和MntR E99C突变体与同源DNA识别序列mntH和mntA的DNA结合。我们的研究证明了这些金属离子能够激活MntR结合DNA的程度。此外,这些研究揭示了MntR和DtxR之间金属特异性的起源,并且与文献中报道的体内数据一致。除了研究MntR的DNA结合能力外,我们还检查了该蛋白的金属结合亲和力,以解释其如何适合DtxR家族和金属调控蛋白的一般领域。结果表明,MntR的金属结合亲和力大致遵循Irving-Williams系列。有趣的是,该蛋白质对其同族金属离子之一表现出最弱的亲和力。最后,研究了金属介导的MntR与DNA结合的机制。使用圆二色性和对环境敏感的染料ANS的初步研究表明,金属结合稳定了MntR的三级或四级结构。随后的研究集中于使用氘交换质谱法(DXMS)来定位这些结构变化,并证明金属结合作用可以刚性化MntR的预组织结构。此外,与典型的转录因子观察相反,辅因子(金属)结合似乎没有改变螺旋-转-螺旋-DNA结合基序的结构。

著录项

  • 作者

    Golynskiy, Misha.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号