首页> 外文学位 >Microbridge tests on multi-layer thin films.
【24h】

Microbridge tests on multi-layer thin films.

机译:在多层薄膜上进行微桥测试。

获取原文
获取原文并翻译 | 示例

摘要

My PhD study was focused on the continuous development of microbridge tests on thin films. We developed a microbridge testing method to characterize the mechanical properties of a symmetrical trilayer thin film composed of two kinds of materials. Theoretically, taking the substrate deformation into account, we analysed the deformation of the symmetrical trilayer microbridge sample with a deformable boundary condition and derived load-deflection formulas in closed-form. The symmetrical condition was satisfied by fabricating the same material layer with the same conditions. In a symmetrical trilayer sample, there is no residual moment and hence no residual deflection in the film, thereby eliminating the effect of residual deflection on the measurement of the load-induced deflection. On the other hand, a zero value of the tension and bending coupling stiffness makes it possible for us to evaluate the Young's modulus of two kinds of materials and the average residual stress of the trilayer thin film simultaneously. The slope of a load-deflection curve under small deformation gives the relationship of the bending stiffness and the residual force, which reduces the number of the parameters to be evaluated from the load-deflection curve under large deformation to two. The designed experiment on the symmetrical SiO2/Si3N4/SiO 2 thin films, which were fabricated by using the MEMS technique and tested by Nanoindentation with a wedge indenter, verifies the novel microbridge testing method. The crucial measurement in the microbridge test is the thickness measurement of each layer in the trilayer film because a small error in the thickness measurement will lead to a large error in the determination of Young's modulus and residual stress. The error analysis indicates that enhancing the measurement precision of the sample geometry will greatly improve the experimental accuracy.; The microbridge test was applied to characterize mechanical properties of asymmetrical trilayer thin films by taking the initial deflection into account. To increase the measurement accuracy, we re-calculated the spring compliances as functions of the film thickness and the thickness-averaged Young's modulus. In general, a residual moment is induced in an asymmetrical trilayer microbridge sample and results in an initial deflection. The profile of the initial deflection provides information about the mechanical properties of the trilayer film, which can be utilized in the mechanical characterization of the film. With the addition information provided by the slope of a load-deflection curve under small loads, which gives the relationship of the equivalent bending stiffness and the initial resultant force, we are able to determine the tension stiffness, the bending stiffness, the residual moment, and the residual force, from the profile of the initial deflection on a single sample based on the beam theory without other assumptions. Then, if two of the four parameters are used as input data, we can verify the other two parameters from fitting the entire load-deflection curve under large deformation. It should be emphasized that although an asymmetrical trilayer thin film was used here to demonstrate the extended microbridge testing method, the extended microbridge testing method holds actually for multilayer films because only the four parameters, the tension stiffness, the bending stiffness, the residual moment, and the residual force, determine the response of a multilayer microbridge sample in the test.; We also developed a microbridge testing method for a bilayer microbridge beam initially buckled by residual compressive resultant force and residual moment. A multilayer beam with a compressive residual resultant force will be buckled if the compressive residual resultant force exceeds a critical value. If there co-exist a residual moment and a compressive residual resultant force in a multilayer beam, the residual moment may change the critical value of compressive
机译:我的博士研究专注于薄膜微桥测试的不断发展。我们开发了一种微桥测试方法来表征由两种材料组成的对称三层薄膜的机械性能。理论上,考虑到基板变形,我们分析了具有可变形边界条件的对称三层微桥样品的变形,并导出了封闭形式的荷载-挠度公式。通过以相同条件制造相同材料层来满足对称条件。在对称的三层样品中,薄膜中没有残余力矩,因此没有残余挠度,从而消除了残余挠度对载荷引起的挠度测量的影响。另一方面,拉伸和弯曲耦合刚度的零值使我们可以同时评估两种材料的杨氏模量和三层薄膜的平均残余应力。小变形时的载荷-挠曲曲线的斜率给出了弯曲刚度和残余力的关系,这将要从大变形时的载荷-挠曲曲线评估的参数数量减少到两个。采用MEMS技术制备的对称SiO2 / Si3N4 / SiO2薄膜的设计实验,通过楔形压头的纳米压痕测试,验证了新型微桥测试方法的正确性。微桥测试中的关键测量是三层膜中每一层的厚度测量,因为厚度测量中的小误差将导致杨氏模量和残余应力的确定中的大误差。误差分析表明,提高样品几何尺寸的测量精度将大大提高实验精度。通过考虑初始挠度,将微桥测试应用于表征不对称三层薄膜的机械性能。为了提高测量精度,我们根据膜厚度和平均厚度的杨氏模量重新计算了弹簧的柔度。通常,在不对称三层微桥样品中会感应出残余力矩,并导致初始挠度。初始挠度的轮廓提供了有关三层薄膜机械性能的信息,该信息可用于薄膜的机械表征。利用小载荷下的载荷-挠度曲线的斜率所提供的附加信息,它给出了等效弯曲刚度和初始合力的关系,我们能够确定拉伸刚度,弯曲刚度,残余力矩,残余力,是基于束理论的单个样本在没有其他假设的情况下从初始偏转的轮廓得出的。然后,如果将四个参数中的两个用作输入数据,我们可以通过拟合大变形下的整个载荷-挠度曲线来验证其他两个参数。需要强调的是,尽管此处使用非对称三层薄膜来演示扩展的微桥测试方法,但扩展的微桥测试方法实际上适用于多层膜,因为只有四个参数,即拉伸刚度,弯曲刚度,残余力矩,以及残余力,确定测试中多层微桥样品的响应。我们还为双层微桥梁开发了一种微桥测试方法,该梁最初因残余压缩合力和残余弯矩而弯曲。如果压缩残余合力超过临界值,则具有压缩残余合力的多层梁将发生弯曲。如果多层梁中同时存在残余力矩和压缩残余合力,则残余力矩可能会改变压缩的临界值

著录项

  • 作者

    Wang, Xu-sheng.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号