首页> 外文学位 >Applications of bis and tris(aryloxy)amine ligands to main group and transition metal chemistry.
【24h】

Applications of bis and tris(aryloxy)amine ligands to main group and transition metal chemistry.

机译:双和三(芳氧基)胺配体在主族和过渡金属化学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Sterically demanding alkoxide ligands have been utilized to support a range of homogenous catalytic reactions including metathesis, polymerization, hydrogenation, C-H bond activation, and small molecule activation. Chelating ligands impart stable, mononuclear complexes that may be functionalized to incorporate substituents that tune the electron density at the metal center. In the last 10 years, considerable attention has been given to the application of poly(aryloxide) ligands. In this regard, we sought to develop the applications of bis and tris aryloxide ligands featuring an amine linker.; In Chapter one, the molecular structures of N(o-C 6H4OH)3 and PhN(o-C6H 4OH)2 are compared, indicating that replacing one of the ortho-OH groups in N(o-C6H4OH) 3 with hydrogen causes a significant change in the geometry of the molecule with respect to the rotation of the aryl rings and to the extent of pyramidalization at N. Specifically, N(o-C6H4OH) 3 exhibits a pyramidal geometry with all three aryl rings twisted into a propeller like conformation, whereas PhN(o-C6H 4OH)2 exhibits a trigonal planar geometry, with the phenyl ring in the plane defined by the ipso carbons. This conformation maximizes the delocalization of the nitrogen lone pair into the phenyl ring compared to the C6H4OR ring, the negative charge on the ortho carbon is destabilized by a pi-interaction with the oxygen lone pair.; In Chapter 2, comparison of the molecular structures of [kappa 4-N(CH2 ArBut 2 O)3]Sb(OSMe2) and [kappa4-N( o-C6H4O)3]Sb(OSMe2) indicates that the Sb-OSMe2 bond length for [kappa4-N(CH 2 ArBut 2 O)3]Sb(OSMe2) [2.97 A] is significantly longer than that for [kappa4-N(o-C6H 4O)3]Sb(OSMe2) [2.31 A], thereby demonstrating that the [kappa4-N(CH2 ArBut 2 O)3] ligand engenders a less Lewis acidic antimony center than does the [kappa4-N(o-C6H 4O)3] ligand, a manifestation of the greater donor character of the nitrogen atom in the former ligand. Also, [kappa4-N(CH 2 ArBut 2 O)3]Sb exhibits diverse reactivity: AcOH cleaves one of the Sb-O bonds to give [kappa3-N(CH2 ArBut 2 O)2(CH2 ArBut 2 OH)]Sb(kappa1-O2CMe), Br2 undergoes oxidative addition to give N(CH2 ArBut 2 O)3]SbBr2, while reaction with Me3NO·2H 2O gives the oxo and hydroxo complexes {lcub}[kappa4-N(CH 2 ArBut 2 O)3]Sb(mu-O){rcub}2, [kappa4-N(CH 2 ArBut 2 O)3]Sb(OH)2, and {lcub}[kappa4-N(CH 2 ArBut 2 O)3]SbVO{rcub}4{lcub}SbIII 4O6{rcub}.; The reactivity of the bis(phenol), PhN(o-C 6H4OH)2 and tris(phenol), N( o-C6H4OH)3 towards electron rich tungsten and molybdenum complexes is described in Chapter 3. Specifically, PhN(o-C6H4OH)2 undergoes a series intramolecular O-H and C-H bond activation reactions of with W(PMe 3)4(eta2-CH2PMe2)H to give products that feature (i) bidentate eta2- OC, and kappa2-O2 (ii) tridentate kappa 3-O2N, and (iii) tetradentate kappa 4-O2CN coordination modes. This conversion of eta2-OC, to kappa 3-O2N is catalyzed by H2, which facilitates the oxidative addition of the second ArO-H via a dihydrogen bonding intermediate. The ortho position on the phenyl moiety may also be C-H activated and this interconversion of kappa3-O2N to kappa4-O2CN is in equilibrium with H2. The tungsten system is contrasted with the reactivity of PhN(o-C6H4OH) 2 towards Mo(PMe3)6, in which only (i) bidentate kappa 2-O2 and (ii) tridentate kappa 3-O2N coordination modes are observed. Also, the reactivity of N(o-C6H 4OH)3 towards W(PMe3)4(eta 2-CH2PMe2)H results in an array of compounds which feature (i) bidentate eta2-OC, (ii) tetradentate kappa4-O3 N, and (iii) tetradentate kappa4-O 2CN coordination modes and (iv) an unusual dinuclear, bicyclometallated compound, which features both the bidentate eta 2-OC, and tetradentate kappa4- O2CN coordination mode.
机译:立体要求苛刻的醇盐配体已被用于支持一系列均相催化反应,包括复分解,聚合,氢化,C-H键活化和小分子活化。螯合配体可提供稳定的单核络合物,可对其进行功能化以掺入可调节金属中心电子密度的取代基。在最近的十年中,已经对聚(芳氧基)配体的应用给予了相当大的关注。在这方面,我们试图开发具有胺连接基的双和三芳基氧化物配体的应用。在第一章中,比较了N(oC 6H4OH)3和PhN(o-C6H 4OH)2的分子结构,表明用氢取代N(o-C6H4OH)3中的一个邻羟基会引起显着变化N(o-C6H4OH)3表现出金字塔形的几何形状,其中所有三个芳基环都扭曲成螺旋桨状构象,而N(o-C6H4OH)3 PhN(o-C6H 4OH)2呈三角形平面几何形状,苯环在平面上由异丙碳定义。与C6H4OR环相比,这种构型使氮孤对成苯环的离域作用最大化,邻碳上的负电荷由于与氧孤对的pi相互作用而不稳定。在第二章中,比较[κ4-N(CH2 ArBut 2 O)3] Sb(OSMe2)和[kappa4-N(o-C6H4O)3] Sb(OSMe2)的分子结构表明,Sb-OSMe2键[kappa4-N(CH 2 ArBut 2 O)3] Sb(OSMe2)[2.97 A]的长度明显长于[kappa4-N(o-C6H 4O)3] Sb(OSMe2)[2.31 A]的长度,因此证明[kappa4-N(CH2 ArBut 2 O)3]配体比[kappa4-N(o-C6H 4O)3]配体产生的路易斯酸性锑中心少,这表明该化合物具有更大的供体特征。前一个配体中的氮原子。同样,[kappa4-N(CH 2 ArBut 2 O)3] Sb表现出不同的反应性:AcOH裂解Sb-O键之一以产生[kappa3-N(CH2 ArBut 2 O)2(CH2 ArBut 2 OH)] Sb (kappa1-O2CMe),Br2进行氧化加成反应得到N(CH2 ArBut 2 O)3] SbBr2,而与Me3NO·2H 2O反应得到羰基和羟基络合物{lcub} [kappa4-N(CH 2 ArBut 2 O) 3] Sb(mu-O){rcub} 2,[kappa4-N(CH 2 ArBut 2 O)3] Sb(OH)2和{lcub} [kappa4-N(CH 2 ArBut 2 O)3] SbVO {rcub} 4 {lcub} SbIII 4O6 {rcub}。第3章描述了双酚(PhN(oC 6H4OH)2)和三酚(N(o-C6H4OH)3)对富电子的钨和钼络合物的反应性。具体地说,PhN(o-C6H4OH)2与W(PMe 3)4(eta2-CH2PMe2)H进行一系列的分子内OH和CH键活化反应,得到具有(i)双齿eta2- OC和kappa2-O2(ii)三齿kappa 3-O2N的产物, (iii)四齿κ4-O2CN配位模式。 H 2催化将eta2-OC转化为Kappa 3-O2N,这有助于通过二氢键合中间体氧化第二ArO-H。苯基部分上的邻位也可以被C-H活化,这种Kappa3-O2N相互转化为Kappa4-O2CN与H2处于平衡状态。钨体系与PhN(o-C6H4OH)2对Mo(PMe3)6的反应性形成对比,其中仅观察到(i)二齿κ2-O2和(ii)三齿κ3-O2N配位模式。同样,N(o-C6H 4OH)3对W(PMe3)4(eta 2-CH2PMe2)H的反应性导致一系列化合物具有(i)齿状eta2-OC,(ii)四齿κ4-O3N ,以及(iii)四齿kappa4-O 2CN配位模式和(iv)一种不寻常的双核双环金属化化合物,该化合物具有二齿eta 2-OC和四齿kappa4- O2CN配位模式。

著录项

  • 作者

    Kelly, Bryte Valentine.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

  • 入库时间 2022-08-17 11:39:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号