首页> 外文学位 >Fluorescence resonance energy transfer in conjugated organic nanostructures.
【24h】

Fluorescence resonance energy transfer in conjugated organic nanostructures.

机译:共轭有机纳米结构中的荧光共振能量转移。

获取原文
获取原文并翻译 | 示例

摘要

Self assembled conjugated organic nano-structures have been developed as a model to study fluorescence resonance energy transfer (FRET). We have used polymerized polydiacetylenes (PDA) liposomes and multilayered nanostructures. In the first study, we investigated reversing the role of donor and acceptor in conjugated liposome system using PDA and lissamine rhodamine fluorescence dye (LR). The stress-induced electronic absorption transition from blue-phase to red-phase of the PDA was used as a unique system to study this phenomenon. The colorimetric transition from blue-phase PDA to red-phase PDA was achieved through heating the conjugated liposomes. In this work, the FRET mechanism was evaluated without violating the rule of energy flow that energy flows "down hill" and that the roles of donor and acceptor in FRET are fixed. We found that LR is an excellent energy donor and blue-phase PDA is an excellent acceptor. However, after thermo-chromatic transition from blue phase-PDA to red phase-PDA, PDA acted as a donor and LR acted as an acceptor. We have also evaluated FRET efficiency in both cases, and we found that FRET efficiency is higher in the first case (LR donor and PDA acceptor) than in second case. This was rationalized due to energy transfer kinetics and quantum yield differences between LR and red-phase PDA. This research reports the unique phenomena that can be used in sensing of biomolecules and bioparticles.; Self assembled nanotubes from dicarboxylic PDA (DCPDA) were synthesized using layer-by-layer (LBL) techniques inside a template. Alumina templates with 100 nm pore diameter were used for the synthesis of DCPDA nanotubes. The Zr-carboxylate was used for interlayer linking chemistry between the DCPDA layers because Zr-carboxylate is robust and bond formation kinetics is fast. We characterized the multilayer films on flat surfaces (such as gold, quartz and glass) using FTIR, UV-Vis, fluorescence and ellipsometric techniques. The DCPDA nanotubes were characterized using scanning electron microscopy and ionic current measurements. Ionic current measurements provided a simple and convenient method to probe subtle changes (of few nanometers) in nanotube diameter which otherwise is difficult to analyze using conventional characterization techniques. Ellipsometry, electronic absorption and emission studies showed a uniform deposition of DCPDA with deposition cycles. A model is also proposed to explain dis-ordering of -(CH2)8- alkyl position in DCPDA multilayer. It also explains the strong emission from DCPDA films without application of external stress. The self assembled chemistry using the materials may find potential applications in areas such as sensors, actuators, and computational devices at micro and nano scale, as well as an encapsulation drug delivery vehicle. Both these studies offer new insight to the unique properties of polymerized PDA liposomes and films.
机译:自组装共轭有机纳米结构已被开发为研究荧光共振能量转移(FRET)的模型。我们已经使用了聚合的聚二乙炔(PDA)脂质体和多层纳米结构。在第一个研究中,我们研究了使用PDA和赖氨酸罗丹明荧光染料(LR)逆转供体和受体在共轭脂质体系统中的作用。应力诱导的PDA从蓝相到红相的电子吸收跃迁被用作研究此现象的独特系统。通过加热缀合的脂质体可实现从蓝相PDA到红相PDA的比色转变。在这项工作中,在不违反能量流动规则的情况下评估了FRET机制,该规则是能量“下坡”流动,并且供体和受体在FRET中的作用是固定的。我们发现LR是出色的能量供体,蓝相PDA是出色的受体。但是,在从蓝相PDA到红相PDA的热色转变之后,PDA充当了供体,LR充当了受体。我们还评估了这两种情况下的FRET效率,我们发现第一种情况(LR供体和PDA受体)的FRET效率高于第二种情况。这是由于LR和红相PDA之间的能量转移动力学和量子产率差异而合理化的。这项研究报告了可用于传感生物分子和生物颗粒的独特现象。使用模板内部的逐层(LBL)技术合成了来自二羧酸PDA(DCPDA)的自组装纳米管。孔径为100 nm的氧化铝模板用于合成DCPDA纳米管。 Zr-羧酸盐用于DCPDA层之间的层间连接化学反应,因为Zr-羧酸盐坚固且键形成动力学快。我们使用FTIR,UV-Vis,荧光和椭偏技术在平坦表面(例如金,石英和玻璃)上对多层膜进行了表征。使用扫描电子显微镜和离子电流测量对DCPDA纳米管进行表征。离子电流测量提供了一种简单方便的方法来探测纳米管直径的细微变化(几纳米),否则很难使用常规表征技术进行分析。椭偏,电子吸收和发射研究表明DCPDA具有沉积循环的均匀沉积。还提出了一种模型来解释DCPDA多层中-(CH2)8-烷基位置的无序。这也说明了DCPDA薄膜在不施加外部应力的情况下会产生强发射。使用这些材料的自组装化学物质可能会在诸如传感器,执行器和微米级和纳米级计算设备以及封装药物输送工具等领域找到潜在的应用。这两项研究为聚合的PDA脂质体和薄膜的独特性质提供了新的见识。

著录项

  • 作者

    Gatebe, Erastus G.;

  • 作者单位

    Southern Illinois University at Carbondale.$bChemistry.;

  • 授予单位 Southern Illinois University at Carbondale.$bChemistry.;
  • 学科 Chemistry Analytical.; Chemistry Polymer.
  • 学位 M.S.
  • 年度 2007
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号