首页> 外文学位 >Bacillus subtilis Phop∼P direct roles in PHO and RES regulation in response to Pi-stress.
【24h】

Bacillus subtilis Phop∼P direct roles in PHO and RES regulation in response to Pi-stress.

机译:枯草芽孢杆菌Phop-P在响应Pi胁迫时直接参与PHO和RES调节。

获取原文
获取原文并翻译 | 示例

摘要

Bacillus subtilis phosphate-starvation response (PHO) regulator, PhoP, activates or represses different sets of genes important for survival under such harsh condition. In order for PhoP to exert these function, it must be phosphorylated on a specific aspartate residue residing in its receiver domain. The histidine kinase PhoR phosphorylates PhoP allowing PHO-induction. Here we observed that PhoP whether in the phosphorylated or unphosphorylated form could activate transcription of target genes, at least in vitro. In vivo analysis suggested that when cellular PhoP concentrations were higher than normal, PhoP activated target gene expression in the absence of PhoR. Surprisingly, a null mutation in phoR allowed expression of one of the PHO-regulon genes, phoB, encoding alkaline phosphatase III, in Pi-replete condition and with a second mutation in ccpA, encoding catabolite control protein A that is involved in carbon catabolite regulation (CCR), PHO-induction was Pi-independent. However, glucose supplementation in the culture media was essential for the PhoP-dependent PHO-induction in both wild-type and mutant strains. The data suggested a possible role of PhoR in PHO-regulon inactivation during growth in Pi-replete condition. In a second project where we investigated the role of PhoP∼P in transcription of resA, encoding a thiol-disulfide oxidoreductase required for cytochrome c550 maturation, a direct connection between PHO, RES, and CCR was uncovered. CcpA repressed resA transcription in vitro and PhoP∼P was required to relieve such repression plausibly via competitive binding to target DNA. In addition, ResD, the aerobic/anaerobic pleitropic regulator, was unable to activate transcription of the [ resA.CcpA] complex unless ResD was phosphorylated by its cognate histidine kinase ResE. The ResE auto-kinas activity was inhibited by di-nucleotides such as NADH suggesting that maximal ResD phosphorylation occurred after initial resA transcription. The Michael-Menten kinetic analysis of the ResE histidine kinase indicated that ResE auto-kinase activity has two Km values, one at [ATP] = 50 nM and the second at [ATP] = 3 muM. At high ATP concentrations above 1 muM, less ResD was phosphorylated, whereas at low ATP concentrations less than 50 nM, more ResD was phosphorylated. Interestingly, incubation of ResD with ATP alone in the absence of ResE allowed ResD activation and transcription of the target promoter, resA, at least in vitro. Data suggested a possible two active forms of ResD, the [ResD∼P] form activating anaerobic gene transcription, and a [ResD.ATP] form activating aerobic gene transcription.
机译:枯草芽孢杆菌磷酸饥饿反应(PHO)调节剂PhoP激活或抑制在这种恶劣条件下对存活至关重要的不同基因集。为了使PhoP发挥这些功能,必须在其受体域中存在的特定天冬氨酸残基上将其磷酸化。组氨酸激酶PhoR使PhoP磷酸化,从而诱导PHO。在这里我们观察到磷酸化或非磷酸化形式的PhoP至少在体外可以激活靶基因的转录。体内分析表明,当细胞PhoP浓度高于正常水平时,在没有PhoR的情况下PhoP会激活靶基因表达。出人意料的是,phoR的无效突变使表达PHO的PHO调节基因之一phoB在碱性条件下充分表达,而碱性磷酸酶III则在ccpA中发生了第二个突变,编码参与代谢碳素调节的分解代谢物控制蛋白A。 (CCR),PHO诱导与Pi无关。然而,培养基中的葡萄糖补充对于野生型和突变菌株中的PhoP依赖性PHO诱导都是必不可少的。数据表明PhoR在Pi充足条件下生长期间可能在PHO调节子失活中发挥作用。在第二个项目中,我们研究了PhoP〜P在resA转录中的作用,该编码编码细胞色素c550成熟所需的巯基-二硫键氧化还原酶,未发现PHO,RES和CCR之间的直接联系。 CcpA在体外抑制了resA转录,需要PhoP〜P通过与靶DNA的竞争性结合来合理地缓解这种抑制。另外,有氧/无氧多效性调节剂ResD无法激活[resA.CcpA]复合物的转录,除非ResD被其相关的组氨酸激酶ResE磷酸化。 ResE的自身激酶活性受到二核苷酸(如NADH)的抑制,表明在最初的resA转录后最大的ResD磷酸化发生。 ResE组氨酸激酶的Michael-Menten动力学分析表明,ResE自身激酶活性具有两个Km值,一个在[ATP] = 50 nM,另一个在[ATP] = 3μM。在高于1μM的高ATP浓度下,更少的ResD被磷酸化,而在低于50 nM的低ATP浓度下,更多的ResD被磷酸化。有趣的是,在不存在ResE的情况下,将ResD与ATP单独孵育至少允许在体外进行ResD的激活和目标启动子resA的转录。数据表明ResD可能是两种活性形式,[ResD〜P]形式激活厌氧基因转录,[ResD.ATP]形式激活有氧基因转录。

著录项

  • 作者

    Abdel-Fattah, Wael R.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号