首页> 外文学位 >Mathematical programming algorithms for reliable routing and robust evacuation problems.
【24h】

Mathematical programming algorithms for reliable routing and robust evacuation problems.

机译:数学编程算法可实现可靠的路线选择和强大的疏散问题。

获取原文
获取原文并翻译 | 示例

摘要

Most traditional routing problems assume perfect operability of all arcs and nodes. However, when independent arc failure probabilities exist, a secondary objective must be present to retain some measure of expected functionality. We first briefly consider the reliability-constrained single-path problem, where we look for the lowest cost path that meets a reliability side constraint. This analysis enables us to then examine the reliability-constrained two-path problem, which seeks to establish two minimum-cost paths between a source and destination node wherein at least one path must remain fully operable with some threshold probability. We consider the case in which both paths must be arc-disjoint and the case in which arcs can be shared between the paths. We prove both problems to be NP-hard. We examine strategies for solving the resulting nonlinear integer program, including pruning, coefficient tightening, lifting, and branch-and-bound partitioning schemes.; Next, we consider the reliable h-path routing problem, which seeks a minimum-cost set of h ≥ 2 arc-independent paths between a source and destination node, such that the probability that at least one path remains operational is sufficiently large. Our prior arc-based models and algorithms tailored for the case in which h = 2 do not extend well to the general h-path problem. Thus, we propose two alternative integer programming formulations for the h-path problem in which the variables correspond to origin-destination paths. We propose two branch-and-price-and-cut algorithms for solving these new formulations, and provide computational results to demonstrate the efficiency of these algorithms.; Finally, we examine the robust design of an evacuation tree, in which evacuation is subject to capacity restrictions on arcs. Given a discrete set of disaster scenarios with varying network populations, arc capacities, transit times, and time-dependent penalty functions, we seek to establish an optimal a priori evacuation tree that minimizes the expected evacuation penalty. The solution strategy is based on Benders decomposition, and we provide efficient methods for obtaining primal and dual subproblem solutions. We analyze techniques for strengthening the master problem formulation, thus reducing the number of master problem solutions required for the algorithm's convergence.
机译:大多数传统的路由问题都假定所有弧和节点都具有完美的可操作性。但是,当存在独立的电弧故障概率时,必须提出一个次要目标,以保留预期功能的某种度量。我们首先简要考虑可靠性受约束的单路径问题,在此问题中寻找满足可靠性侧约束的最低成本路径。这种分析使我们能够检查可靠性受限的两路径问题,该问题试图在源节点和目标节点之间建立两条最小成本路径,其中至少一条路径必须以一定的阈值概率保持完全可操作。我们考虑两条路径都必须是不相交的弧线的情况,以及两条路径之间可以共享弧线的情况。我们证明这两个问题都是NP难题。我们研究解决所得非线性整数程序的策略,包括修剪,系数紧缩,提升和分支定界分割方案。接下来,我们考虑可靠的h路径路由问题,该问题寻找源节点和目标节点之间的h≥2个与弧无关的路径的最小成本集合,从而使至少一条路径保持可操作的概率足够大。我们针对h = 2的情况量身定制的基于弧的现有模型和算法不能很好地扩展到一般的h路径问题。因此,我们为h路径问题提出了两种可选的整数规划公式,其中变量对应于原点-目的地路径。我们提出了两种分支和价格削减的算法来解决这些新公式,并提供计算结果来证明这些算法的效率。最后,我们研究了疏散树的鲁棒设计,其中疏散受到弧上容量的限制。给定一组离散的灾难场景,这些场景具有不同的网络人口,电弧容量,渡越时间和与时间有关的惩罚功能,我们力求建立一个最佳的先验疏散树,以最大程度地减少预期的疏散惩罚。该解决方案策略基于Benders分解,我们提供了用于获取主要和双重子问题解决方案的有效方法。我们分析了用于增强主问题表述的技术,从而减少了算法收敛所需的主问题解的数量。

著录项

  • 作者

    Andreas, April Kramer.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Industrial.; Engineering System Science.; Operations Research.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 一般工业技术;系统科学;运筹学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号