首页> 外文学位 >Advanced indium phosphide based monolithic integration using quantum well intermixing and MOCVD regrowth.
【24h】

Advanced indium phosphide based monolithic integration using quantum well intermixing and MOCVD regrowth.

机译:使用量子阱混合和MOCVD再生长的先进的基于磷化铟的单片集成。

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of the internet has fueled the explosive growth of telecommunications over the past three decades. As a result, the demand for communication systems providing increased bandwidth and flexibility at lower cost continues to rise. Lightwave communication systems meet these demands.; The integration of multiple optoelectronic components onto a single chip could revolutionize the photonics industry. Photonic integrated circuits (PIC) provide the potential for cost reduction, decreased loss, decreased power consumption, and drastic space savings over conventional fiber optic communication systems comprised of discrete components. For optimal performance, each component within the PIC may require a unique epitaxial layer structure, band-gap energy, and/or waveguide architecture. Conventional integration methods facilitating such flexibility are increasingly complex and often result in decreased device yield, driving fabrication costs upward. It is this trade-off between performance and device yield that has hindered the scaling of photonic circuits.; This dissertation presents high-functionality PICs operating at 10 and 40 Gb/s fabricated using novel integration technologies based on a robust quantum-well-intermixing (QWI) method and metal organic chemical vapor deposition (MOCVD) regrowth. We optimize the QWI process for the integration of high-performance quantum well electroabsorption modulators (QW-EAM) with sampled-grating (SG) DBR lasers to demonstrate the first widely-tunable negative chirp 10 and 40 Gb/s EAM based transmitters.; Alone, QWI does not afford the integration of high-performance semiconductor optical amplifiers (SOA) and photodetectors with the transmitters. To overcome this limitation, we have developed a novel high-flexibility integration scheme combining MOCVD regrowth with QWI to merge low optical confinement factor SOAs and 40 Gb/s uni-traveling carrier (UTC) photodiodes on the same chip as the QW-EAM based transmitters. These high-saturation power receiver structures represent the state-of-the-art technologies for even discrete components. Using the novel integration technology, we present the first widely-tunable single-chip device capable of transmit and receive functionality at 40 Gb/s. This device monolithically integrates tunable lasers, EAMs, SOAs, and photodetectors with performance that rivals optimized discrete components. The high-flexibility integration scheme requires only simple blanket regrowth steps and thus breaks the performance versus yield trade-off plaguing conventional fabrication techniques employed for high-functionality PICs.
机译:过去三十年来,互联网的蓬勃发展推动了电信的爆炸性增长。结果,对以更低的成本提供增加的带宽和灵活性的通信系统的需求持续增长。光波通信系统可以满足这些要求。将多个光电组件集成到单个芯片上可以彻底改变光子学行业。与由分立组件组成的常规光纤通信系统相比,光子集成电路(PIC)具有降低成本,降低损耗,降低功耗以及节省大量空间的潜力。为了获得最佳性能,PIC中的每个组件可能需要唯一的外延层结构,带隙能量和/或波导架构。促进这种灵活性的常规集成方法变得越来越复杂,并且经常导致器件成品率下降,从而推动制造成本上升。性能和器件良率之间的这种权衡阻碍了光子电路的规模。本文提出了一种新的集成技术,该技术基于鲁棒的量子阱混合(QWI)方法和金属有机化学气相沉积(MOCVD)再生长技术,以10 Gb / s和40 Gb / s的速度运行。我们优化了QWI工艺,将高性能量子阱电吸收调制器(QW-EAM)与采样光栅(SG)DBR激光器集成在一起,展示了首款可广泛调谐的负线性调频10和40 Gb / s EAM发射机。 QWI本身无法提供将高性能半导体光放大器(SOA)和光电探测器与发射器集成在一起的功能。为克服此限制,我们开发了一种新颖的高灵活性集成方案,将MOCVD再生长与QWI结合在一起,以将低光学限制因子SOA和40 Gb / s单行进载波(UTC)光电二极管合并在与基于QW-EAM的同一芯片上发射机。这些高饱和功率接收器结构代表了即使是分立元件的最新技术。利用新颖的集成技术,我们展示了首款可广泛调谐的单芯片设备,能够以40 Gb / s的速度发送和接收功能。该器件单片集成了可调谐激光器,EAM,SOA和光电探测器,其性能可与优化的分立组件相媲美。高灵活性集成方案仅需要简单的毯式再生长步骤,从而打破了性能与良率的折衷,这困扰了用于高功能性PIC的传统制造技术。

著录项

  • 作者

    Raring, James W.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 362 p.
  • 总页数 362
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号