首页> 外文学位 >Modulation-doped semiconductor nanowires: Functional building blocks for nanoelectronics and nanophotonics.
【24h】

Modulation-doped semiconductor nanowires: Functional building blocks for nanoelectronics and nanophotonics.

机译:调制掺杂的半导体纳米线:用于纳米电子学和纳米光子学的功能构建块。

获取原文
获取原文并翻译 | 示例

摘要

The synthetic implementation of designed nanostructures is central to advances in the field of nanoscience and nanotechnology. Modulation of the composition of nanostructures during growth could encode information or function in a manner analogous to biological systems and independent of the constraints of lithography. This thesis presents the synthesis and characterization of modulation-doped nanowires with the structural and electrical properties of modulated regions are completely defined during synthesis, and efforts of developing conventional and quantum electronic and photonic based on modulation-doped nanowires.; We describe the successful synthesis of modulation-doped silicon nanowires using the nanocluster-catalyzed vapor-liquid-solid growth processes. The pure axial elongation without radial overcoating during the growth process was achieved with the introduction of a local substrate heater and use of a hydrogen atmosphere and verified by High-resolution transmission electron microscopy studies. Scanning gate microscopy shows that the key properties of the modulated structures, including the number, size and period of the differentially doped regions, are defined in a controllable manner during synthesis, and moreover, that feature sizes to less than 50 nm are possible.; These modulation-doped nanowires provide the potential for essential device function to be defined during synthesis not lithography. First, a lithography-free approach is developed for addressing individual nanowires in an array when the nanowires have different dopant modulation sequences and implemented in a 2x2 modulation-doped silicon nanowire field-effect transistor array. Second, encoding of single and coupled double quantum dot (QD) structures is achieved in modulation-doped nanowires. Low temperature transport studies demonstrate that QD sizes of single QD structures as well as the interaction between two QDs of double QD structures can be controlled by synthesis. Third, this general synthesis approach is extended to a novel p-i-n nanowire structure, in which both dopant type and concentration are modulated. Spatial photocurrent measurements demonstrate the potential of the application for single nanowire avalanche photodetectors, and being integrated with other essential nanophotonic elements for integrated systems. Fundamentally, studies of the impact ionization coefficients of electrons and holes in silicon nanowires suggest possible longer optical phonon mean free path than that in bulk due to the phonon confinement effect.; Lastly, two other types of nanowire heterostructures, branched nanowires and atomic sharp metal/semiconductor nanowire heterostructures are also developed through synthesis via a multi-step metal-catalyzed chemical vapor deposition method, and chemical conversion of semiconductor nanowire, respectively. Their implementations for nanoelectronic device elements are also discussed.
机译:设计的纳米结构的合成实现对于纳米科学和纳米技术领域的发展至关重要。生长过程中纳米结构组成的调制可以以类似于生物系统且不受光刻限制的方式对信息或功能进行编码。本文提出了调制掺杂的纳米线的合成与表征,在合成过程中完全定义了调制区的结构和电学性质,并努力开发基于调制掺杂的纳米线的常规量子电子和光子学。我们描述了使用纳米团簇催化的气液固生长过程成功合成了调制掺杂的硅纳米线。通过引入局部衬底加热器和使用氢气气氛,可以在生长过程中获得纯的轴向伸长而无径向涂层,并通过高分辨率透射电子显微镜研究进行了验证。扫描门显微镜显示调制结构的关键特性,包括差异掺杂区域的数量,大小和周期,在合成过程中以可控制的方式定义,此外,特征尺寸可能小于50 nm。这些调制掺杂的纳米线提供了在合成而不是光刻过程中定义基本器件功能的潜力。首先,开发了一种无光刻方法,用于在纳米线具有不同的掺杂剂调制序列时解决阵列中的各个纳米线,并在2x2调制掺杂的硅纳米线场效应晶体管阵列中实现。其次,在调制掺杂的纳米线中实现了单量子点和耦合双量子点(QD)结构的编码。低温迁移研究表明,单个QD结构的QD大小以及双QD结构的两个QD之间的相互作用可以通过合成来控制。第三,这种一般的合成方法扩展到了新颖的p-i-n纳米线结构,其中掺杂剂类型和浓度都得到了调节。空间光电流测量证明了单纳米线雪崩光电探测器的应用潜力,并已与其他必要的纳米光子元件集成在一起用于集成系统。从根本上讲,对硅纳米线中电子和空穴的碰撞电离系数的研究表明,由于声子限制效应,光学声子平均自由程可能比体中的更长。最后,还分别通过多步金属催化化学气相沉积法的合成以及半导体纳米线的化学转化,开发了两种其他类型的纳米线异质结构:支链纳米线和原子锐利的金属/半导体纳米线异质结构。还讨论了它们对纳米电子器件元件的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号