首页> 外文学位 >Optical properties of zinc oxide nanotips and their device applications.
【24h】

Optical properties of zinc oxide nanotips and their device applications.

机译:氧化锌纳米尖端的光学性质及其装置应用。

获取原文
获取原文并翻译 | 示例

摘要

Zinc oxide (ZnO) nanostructures are emerging as the key building blocks for nanoscale optoelectronic and electronic devices. ZnO has a large exciton binding energy (∼60 meV), which makes its nanotips ideal for studying excitonic emissions in one-dimensional systems even at room temperature. ZnO nanowires show a strong exciton-polariton interaction, promising for fabricating UV nanolasers. The large and fast photoconductivity in high quality ZnO is suitable for making UV photodetectors. ZnO nanotips can be grown on various substrates, including glass, Si, and GaN, at low growth temperature (∼400°C) by metal-organic chemical vapor deposition (MOCVD) that provides the potential of the integration of ZnO nanotips with Si based microelectronics and GaN based optoelectronics devices. To date, most of the research has been focused either on ZnO films, or on "pick-and-place" manipulation of randomly dispersed ZnO nanowires to study their physical properties.;In this dissertation work in-situ n-type doping of ZnO nanotips during MOCVD is studied, including the doping effects on optical properties and electrical conductivity. Nanoscale tunneling current-voltage characteristics of the ZnO nanotips show the conductivity enhancement due to Ga doping at the proper range of doping concentration. At low or moderate doping levels, the increase in photoluminescence (PL) intensity from Ga doping is attributed to the increase of Ga donor related impurity emission.;The excitonic emissions of ZnO nanotips are investigated using temperature-dependent PL spectroscopy. The sharp free exciton and donor-bound exciton peaks are observed at 4.4K, confirming high optical quality of the ZnO nanotips. Free exciton emission dominates at temperatures above 50K. The thermal dissociation of these bound excitons forms free excitons and neutral donors. Temperature-dependent free A exciton peak emission is fitted to the Varshni's equation to study the variation of energy bandgap versus temperature.;A prototype of ZnO nanotips/GaN light emitting devices has been demonstrated using an n-ZnO nanotips/p-GaN heterostructure. The electroluminescence with a peak wavelength of 406nm is primarily due to radiative recombination from electron injection from n-type ZnO nanotips into p-type GaN. A novel integrated ZnO nanotips/GaN LED has been fabricated for enhanced light emission efficiency. A Ga-doped ZnO transparent conductive oxide (GZO) film and ZnO nanotips are sequentially grown on top of a GaN LED, serving as the transparent electrode and the light extraction layer, respectively. Compared with the conventional Ni/Au p-metal LED, light output power from the ZnO nanotips/GZO/GaN LED is improved by 1.7 times. The enhanced light extraction is attributed to the increased light scattering and transmission in the ZnO/GaN multilayer.
机译:氧化锌(ZnO)纳米结构正在成为纳米级光电和电子设备的关键组成部分。 ZnO具有大的激子结合能(〜60 meV),这使其纳米尖端成为研究一维系统甚至在室温下的激子发射的理想选择。 ZnO纳米线表现出很强的激子-极化子相互作用,有望用于制造UV纳米激光。高质量ZnO中的大而快速的光电导性适用于制造UV光电探测器。 ZnO纳米尖端可以通过金属有机化学气相沉积(MOCVD)在低生长温度(〜400°C)的各种衬底上生长,包括玻璃,Si和GaN,这提供了ZnO纳米尖端与Si基集成的潜力微电子和GaN基光电器件。迄今为止,大多数研究要么集中在ZnO薄膜上,要么集中在随机分散的ZnO纳米线的“拾取和放置”操作上,以研究其物理性质。研究了MOCVD过程中的纳米尖端,包括掺杂对光学性能和电导率的影响。 ZnO纳米尖端的纳米级隧穿电流-电压特性显示出在适当的掺杂浓度范围内,由于Ga掺杂而导致的电导率增强。在低或中等掺杂水平下,Ga掺杂引起的光致发光(PL)强度的增加归因于与Ga供体有关的杂质发射的增加。;使用温度依赖性PL光谱研究了ZnO纳米尖端的激子发射。在4.4K处观察到了锐利的自由激子峰和供体结合的激子峰,证实了ZnO纳米尖端的高光学质量。在50K以上的温度下,自由激子发射起主导作用。这些结合的激子的热离解形成自由激子和中性供体。随温度变化的自由度将激子峰发射拟合到Varshni方程中,以研究能带隙随温度的变化。;使用n-ZnO纳米尖端/ p-GaN异质结构证明了ZnO纳米尖端/ GaN发光器件的原型。峰值波长为406nm的电致发光主要归因于电子从n型ZnO纳米尖端注入p型GaN中的辐射复合。为了提高发光效率,已经制造了新颖的集成ZnO纳米尖端/ GaN LED。在分别用作透明电极和光提取层的GaN LED的顶部顺序生长Ga掺杂的ZnO透明导电氧化物(GZO)膜和ZnO纳米尖端。与传统的Ni / Au p-金属LED相比,ZnO纳米尖端/ GZO / GaN LED的光输出功率提高了1.7倍。增强的光提取归因于ZnO / GaN多层膜中增加的光散射和透射。

著录项

  • 作者

    Zhong, Jian.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号