首页> 外文学位 >Transport and stability analysis of dilute magnetized accreting flows.
【24h】

Transport and stability analysis of dilute magnetized accreting flows.

机译:稀磁化吸积流的输运和稳定性分析。

获取原文
获取原文并翻译 | 示例

摘要

Accretion, the process by which matter collects into a central object, is ubiquitous and often dynamically important for astrophysical objects on the scale of compact object disks (∼ 1010 cm) up to that of galactic clusters (∼ 1024 cm). In order for matter to accrete, it must lose angular momentum. The central issue in accretion theory is to explain the mechanism by which angular momentum is lost at rates sufficient to accord with observation, orders of magnitude beyond what may be accounted through collisional viscosity. For a wide class of astrophysical objects, characterized by collisional mean free paths far smaller than the system scale, the magnetorotational instability (MRI), first discovered in a restricted global form by Velikhov (1959); Chandrasekhar (1960), produces MHD turbulence and a level of angular momentum transport sufficient to account for observed rates of disk accretion (Balbus & Hawley 1991). However, in underluminous accretion flows in massive and supermassive central galactic black holes, the best studied example of which is Sagittarius A* at the center of our Milky Way, the MRI is not the sole means of turbulent transport. These flows are characterized by the radiatively inefficient accretion of a hot, dilute (mildly collisional to highly collisionless), and optically thin plasma. In these plasmas, even an extremely weak magnetic field can lead, in addition to the MRI, to anisotropic heat fluxes and viscous stresses directed along field lines, resulting in new classes of instabilities. Furthermore, in these radiatively inefficient flows, the energy generated through gravitational infall must be transported through local thermal fluxes rather than locally dissipated as in highly collisional systems.;We propose a model to explain how hot, dilute accretion onto compact objects may then occur. We use both fluid and kinetic theory to examine the effects of other instabilities, the magnetothermal instability (Balbus 2001) and magnetoviscous instability (Balbus 2004b; Islam & Balbus 2005), that may operate within these flows. A more elaborate kinetic theory must be applied for those dilute systems in which the collisional mean free path is larger than the system scale or larger than the wavelengths of the fastest growing instabilities. Our work demonstrates that these new modes may create sufficient angular momentum and thermal energy transport to account for the expected rates of accretion.
机译:吸积是物质聚集到中心物体的过程,它无处不在,并且通常对于紧凑天体盘(约1010厘米)到银河星团(约1024厘米)的天体天体来说是动态重要的。为了使物质增加,它必须失去角动量。吸积理论的中心问题是解释角动量以足以与观测相符的速率损失的机制,该数量级超出了通过碰撞粘度可以解释的数量级。对于种类繁多的天体物体,其碰撞平均自由程远小于系统尺度,其磁电不稳定性(MRI)最早是由Velikhov(1959)以受限的整体形式发现的; Chandrasekhar(1960)产生了MHD湍流和一定程度的角动量传输,足以说明观测到的磁盘吸积率(Balbus&Hawley 1991)。但是,在巨大超大质量的中央银河黑洞中的地下增生流中,研究得最好的例子是银河系中心的射手座A *,MRI并不是唯一的湍流传输手段。这些流动的特征是热的,稀的(轻度碰撞到高度无碰撞)和光学上稀薄的等离子体的辐射效率低下。在这些等离子体中,除了MRI以外,即使是非常弱的磁场也可能导致各向异性的热通量和沿磁力线引导的粘性应力,从而导致新的不稳定性。此外,在这些辐射效率低的流中,重力引力产生的能量必须通过局部热通量传输,而不是像高度碰撞的系统那样局部消散。;我们提出了一个模型来解释为何会发生热的稀积物到紧凑物体上。我们同时使用流体和动力学理论来检验可能在这些流动中起作用的其他不稳定性的影响,磁热不稳定性(Balbus 2001)和磁粘性不稳定性(Balbus 2004b; Islam&Balbus 2005)。对于那些碰撞平均自由程大于系统规模或大于增长最快的不稳定性的波长的稀系统,必须应用更为详尽的动力学理论。我们的工作表明,这些新模式可能会产生足够的角动量和热能传输,以说明预期的吸积率。

著录项

  • 作者

    Islam, Tanim.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Physics Astronomy and Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号