首页> 外文学位 >Evolution and neurobiology of the neural circuitry underlying crawling in nudibranch molluscs.
【24h】

Evolution and neurobiology of the neural circuitry underlying crawling in nudibranch molluscs.

机译:裸udi软体动物爬行的神经回路的进化和神经生物学。

获取原文
获取原文并翻译 | 示例

摘要

The evolution of animal behavior is, in part, a reflection of the evolution of the nervous system. In the search for general principles of how neural circuits evolve, a fundamental question is whether certain elements of nervous systems tend to be conserved whereas others are evolutionarily labile. Nudibranch molluscs are ideal for comparative studies of neural circuits because the sea slugs, as a group, show morphological and behavioral diversity yet possess a relatively simple nervous system.; The species Tritonia diomedea has been used as a model organism to understand the neural basis of various behavioral patterns, including the neural basis of mucociliary crawling. Mucociliary crawling is the primary mode of locomotion by the nudibranchs, although muscular crawling has been observed in at least two species. In addition to this behavioral variation, the nudibranchs also have variation in foot morphology. To determine whether there are aspects of the nudibranch nervous system that are correlated with behavior or morphology, the neural circuit underlying crawling was examined in a number of nudibranch species.; The central nervous system of T. diomedea has two pairs of ciliary motor neurons that produce TPeps, a group of cilio-exitatory neuropeptides. T. diomedea also has an extensive network of TPep-immuoreactive neurites at the base of the pedal epithelium. A similar network of TPep-like immunoreactivity was found at the pedal epithelium of all nudibranchs examined. This feature was also seen in several non-nudibranch species, indicating that the TPep-based cilio-excitatory system may be a general feature of the gastropods. Additionally, neurons homologous to the T. diomedea ciliary motor neurons were found in all nudibranchs examined. Differences in the size of ciliary motor neurons between species were not obviously correlated with crawling behavior or foot morphology. There was a significant correlation between the number of cells and the ratio of the length of the foot to the width of the foot. Species with a relatively wide foot tended to have more large TPep-LIR cells than species with a long, narrow foot. Changes in cell number may be a common trend in how the nervous system evolves to match morphological changes.
机译:动物行为的演变部分反映了神经系统的进化。在寻找神经回路如何进化的一般原理时,一个基本问题是神经系统的某些元素是否趋于保守而其他元素在进化上不稳定。 Nudibranch软体动物是神经回路比较研究的理想选择,因为海作为一个整体显示出形态和行为多样性,但拥有相对简单的神经系统。 Tritonia diomedea物种已被用作模型生物,以了解各种行为模式的神经基础,包括粘膜纤毛爬行的神经基础。尽管在至少两个物种中已观察到肌肉爬行,但粘毛纤毛爬行是裸露分支的主要运动方式。除了这种行为上的变化外,裸udi的脚部形态也有变化。为了确定裸支神经系统的某些方面是否与行为或形态相关,在许多裸支动物中检查了爬行的神经回路。 T. diomedea的中枢神经系统有两对产生TPeps的睫状运动神经元,TPeps是一组纤毛兴奋性神经肽。 T. diomedea在踏板上皮的底部还具有广泛的TPep免疫反应性神经突网络。在所有检查的裸露分支的踏板上皮中都发现了类似的TPep样免疫反应网络。在几个非裸枝科动物中也发现了这一特征,表明基于TPep的纤毛兴奋系统可能是腹足动物的普遍特征。另外,在所有检查的裸露分支中都发现了与二叠球菌睫状体睫状运动神经元同源的神经元。物种之间睫状运动神经元大小的差异与爬行行为或足部形态没有明显的相关性。细胞的数量与脚的长度与脚的宽度之比之间存在显着的相关性。足部较宽的物种比足部长而狭窄的物种倾向于拥有更大的TPep-LIR细胞。细胞数量的变化可能是神经系统如何进化以适应形态变化的普遍趋势。

著录项

  • 作者

    Baltzley, Michael Joseph.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Biology Zoology.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 动物学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号