首页> 外文学位 >Electrocodeposition of nanoparticle composite films using an impinging jet electrode.
【24h】

Electrocodeposition of nanoparticle composite films using an impinging jet electrode.

机译:使用撞击式喷射电极对纳米颗粒复合膜进行电共沉积。

获取原文
获取原文并翻译 | 示例

摘要

An impinging jet electroplating system with controlled hydrodynamics for rapid plating of composite films, was designed, developed, built, and tested. The resulting system enabled electrodeposition with flowrates from 0.5 LPM to 7.0 LPM, current densities of 25 mA/cm2 to 200 mA/cm 2, and particle loading from 20 to 120 g/L. Electrocodeposition of a copper matrix from a 1.0 M CuSO4 + 1.2 M H2SO 4 bath from kinetically controlled to mass transfer limited conditions with a 50 nm gamma-alumina and 1 mum alpha-alumina particles was studied. The resulting particle incorporation ranged from 0.5 up to 7.0 wt% depending on operating conditions. The maximum particle incorporation of 7.0 wt% for 50 nm gamma-alumina was deposited at 2.5 LPM, 25 mA/cm2, and 120 g/L particle loading. The maximum particle incorporation for 1 mum alpha-alumina of 5.3 wt% was deposited at 2.5 LPM, 200 mA/cm2, and 120 g/L particle loading. Particle incorporation increased linearly with increasing particle loading for 50 nm gamma-alumina. The structure of the deposits was analyzed by electron microscopy, which determined average grain sizes as small as 175 nm for a composite film with 50 nm gamma-alumina particles deposited with a current density of 200 mA/cm2. Imaging with a backscatter electron detector showed a random distribution of particles in the deposited films. The resistivity of the deposited films was measured with a maximum resistance of 0.21 muO was measured for a sample with 2.2 wt% 50 nm alumina incorporation with 175 nm average grain size. This was a 75% increase in resistance compared to a pure copper electrodeposited film.
机译:设计,开发,制造和测试了具有可控流体动力学的撞击式喷射电镀系统,用于快速电镀复合膜。最终的系统能够以0.5 LPM至7.0 LPM的流速,25 mA / cm2至200 mA / cm 2的电流密度以及20至120 g / L的颗粒负载进行电沉积。研究了从1.0 M CuSO4 + 1.2 M H2SO 4浴,从动力学控制到传质受限的条件下,用50 nmγ-氧化铝和1 mumα-氧化铝颗粒对铜基质进行电共沉积。取决于操作条件,所得颗粒掺入量为0.5至7.0重量%。以2.5 LPM,25 mA / cm2和120 g / L的颗粒载量沉积50 nmγ-氧化铝的7.0 wt%的最大颗粒掺入量。以2.5 LPM,200 mA / cm2和120 g / L的颗粒负载量沉积了1个5.3 wt%的α-氧化铝的最大颗粒掺入量。对于50 nmγ-氧化铝,颗粒掺入随着颗粒负载的增加线性增加。沉积物的结构通过电子显微镜分析,对于沉积有50 nmγ-氧化铝颗粒且电流密度为200 mA / cm2的复合膜,其平均晶粒尺寸确定为175 nm。用反向散射电子检测器成像显示沉积膜中颗粒的随机分布。对于具有2.2wt%的50nm氧化铝并具有175nm平均粒度的样品,测量了沉积膜的电阻率,最大电阻为0.21μO。与纯铜电沉积膜相比,电阻增加了75%。

著录项

  • 作者

    Osborne, Steven J.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号