首页> 外文学位 >Surfactants effects on microbial activity during pentachlorophenol degradation by Sphingomonas chlorophenolicum strain RA2.
【24h】

Surfactants effects on microbial activity during pentachlorophenol degradation by Sphingomonas chlorophenolicum strain RA2.

机译:表面活性剂对鞘氨醇单胞菌(Sphingomonas chlorophenolicum)菌株RA2在五氯苯酚降解过程中的微生物活性产生影响。

获取原文
获取原文并翻译 | 示例

摘要

Biodegradation is an important approach for remediation of environmental contamination with organic compounds, but methods to monitor success still require further development. The dehydrogenase activity method (INT; p-iodo nitrophenyl phenyl tetrazolium chloride) was used as a measurement of microbial activity tested under various concentrations of a toxic substrate and surfactants. The INT method allowed as investigating the microbial activity changes during PCP (pentachlorophenol) degradation by Sphingomonas chlorophenolicum strain RA2 (RA2) in the presence of high surfactant concentration. As an uncoupler, PCP itself is toxic to bacteria in high concentrations. Biodegradation of glucose was also evaluated to compare results with a non-toxic substrate.;RA2 degraded up to 220 mg/L PCP within 150 hrs. INTF (p-iodo nitrophenyl phenyl tetrazolium chloride formazan) formation curve trends are somewhat correlated with the biomass growth curve measured by optical density. However, the INTF data shows an initial lag phase while the biomass growth and PCP degradation curves do not show this lag phase. Specific INTF data shows that per unit biomass RA2 has more respiration activity in the decay phase than in the exponential phase during biodegradation of high PCP concentrations. This may be due to the substrate toxicity of PCP. Yield coefficients for PCP are significantly different between the two methods, but similar for glucose. However, the endogenous decay coefficients iv derived from both methods are similar, with a trend to increasing values after degradation of higher initial PCP concentrations.;Surfactants may be injected into the subsurface to increase the desorption and dissolution of organic contaminants, where they can be extracted and/or are more bioavailable for biodegradation in situ or in ex situ treatment reactors. Non-ionic surfactants at concentrations above the critical micelle concentration (CMC) have been shown to inhibit bacterial degradation of PCP. A surfactant concentrations below the CMC, Tergitol NP-10 (TNP10, as a representative non-ionic surfactant) does not inhibit biodegradation of 100 mg/L of PCP by RA2. At the supra CMC levels of 3,000 mg/L of TNP10, RA2 can successfully degrade initial PCP concentrations up to 250 mg/L within 450 hrs. However, a significant lag time of more than 200 hours resulted from the surfactant addition, regardless of the initial PCP concentration. The surfactant inhibition mechanism at supra CMC levels is likely due to surfactant interactions with enzymes essential to PCP biodegradation. The surfactants may interfere with induction of the production of PCP degrading enzyme(s) within the RA2 bacteria.;A number of different surfactants were evaluated for their effects on substrate biodegradation by RA2. Glucose is a non-toxic substrate that is degraded by constitutive enzymes and will not partition into surfactant micelles. The surfactant inhibition effect on glucose degradation was, in order from most to least inhibition: the cationic surfactant CTAB; greater than the anionic surfactants SDS > SDBS; greater than the non-ionic surfactants Triton X 114 > Triton X 405 > Igepal CA 720 v and TNP 10 > Triton X 100. Thus, the non-ionic surfactants with mid-range hydrophobic:lipophilic balance (HLB) values were most biocompatible.;For tests with PCP as a representative hydrophobic toxic substrate, the surfactant inhibition effects on PCP biodegradation were: CTAB > SDS > Igepal CA 720 > Tergitol NP 10 > Triton X 114 > Triton X 100. In all cases, PCP biodegradation was inhibited at surfactant concentrations equal to or lower than the concentrations that inhibited glucose biodegradation.;There was some correlation between non-ionic surfactant HLB values and glucose degradation times. For the hydrophilic substrate, there was no change of degradation time with increasing surfactant concentration for both surfactants. However, the degradation of the hydrophobic substrate (PCP) was greatly affected by surfactant concentration. PCP degradation was slower due to the surfactants and different head group surfactant had very similar inhibition of PCP degradation (TNP 10 and Igepal CA 720). This could be due to surfactant sequestration of substrate or interference with membrane associated PCP-degrading enzymes.;This work contributes to the body of knowledge pertaining to biodegradation of PCP in both the presence and absence of surfactants. Information is provided on the possible efficacy of using INT measurements as a rapid surrogate method to acquire information on PCP biodegradation; however, this method has serious limitations for predicting RA2 growth and PCP degradation. More information is provided on how surfactants impact contaminant biodegradation, and possible mechanisms for these effects.
机译:生物降解是用有机化合物修复环境污染的重要方法,但是监测成功的方法仍需要进一步发展。脱氢酶活性法(INT;对碘硝基苯基苯基氯化四氮唑)用作在各种浓度的有毒底物和表面活性剂下测试的微生物活性的量度。 INT方法可用于研究在高表面活性剂浓度下,鞘氨醇单胞菌(Sphingomonas chlorophenolicum)菌株RA2(RA2)在PCP(五氯苯酚)降解过程中的微生物活性变化。作为解偶联剂,五氯苯酚本身对高浓度的细菌有毒。还评估了葡萄糖的生物降解,以与无毒底物进行比较。RA2在150小时内降解高达220 mg / L PCP。 INTF(对-碘硝基苯基苯基氯化四氮唑甲酸)的形成趋势与通过光密度测量的生物量增长曲线有些相关。但是,INTF数据显示了初始滞后阶段,而生物量增长和PCP降解曲线未显示该滞后阶段。特定的INTF数据显示,在高PCP浓度的生物降解过程中,单位生物量RA2在腐烂阶段的呼吸活动比指数阶段的呼吸活动大。这可能是由于PCP对底物的毒性。两种方法之间PCP的产率系数显着不同,但葡萄糖相似。然而,两种方法得出的内生衰减系数iv相似,在较高的初始PCP浓度降低后趋于增加值;表面活性剂可注入地下,以增加有机污染物的解吸和溶解度。提取的和/或生物利用度更高的可原位或在异位处理反应器中进行生物降解。已显示浓度高于临界胶束浓度(CMC)的非离子表面活性剂可抑制PCP的细菌降解。低于CMC的Tergitol NP-10(TNP10,作为代表性的非离子表面活性剂)的表面活性剂浓度不会抑制RA2对100 mg / L PCP的生物降解。在TMC10的超CMC水平为3,000 mg / L的情况下,RA2可以在450小时内成功降解初始PCP浓度,最高可达250 mg / L。但是,无论初始PCP浓度如何,表面活性剂的添加都会导致超过200小时的显着滞后时间。在CMC水平以上的表面活性剂抑制机制可能是由于表面活性剂与PCP生物降解所必需的酶之间的相互作用。表面活性剂可能会干扰RA2细菌内PCP降解酶的产生诱导。评估了许多不同的表面活性剂对RA2对底物生物降解的影响。葡萄糖是一种无毒的底物,可被组成酶降解,并且不会分配到表面活性剂胶束中。表面活性剂对葡萄糖降解的抑制作用按从最大到最小的抑制顺序依次为:阳离子表面活性剂CTAB;和阳离子表面活性剂CTAB。大于阴离子表面活性剂SDS> SDBS;大于非离子表面活性剂Triton X 114> Triton X 405> Igepal CA 720 v和TNP 10> Triton X100。因此,具有中等疏水性:亲脂平衡(HLB)值的非离子表面活性剂具有最高的生物相容性。 ;对于以PCP为代表的疏水性有毒底物的测试,表面活性剂对PCP生物降解的抑制作用为:CTAB> SDS> Igepal CA 720> Tergitol NP 10> Triton X 114> Triton X100。在所有情况下,PCP的生物降解均在表面活性剂的浓度等于或低于抑制葡萄糖生物降解的浓度。非离子表面活性剂HLB值与葡萄糖降解时间之间存在一定的相关性。对于亲水性基材,两种表面活性剂的降解时间都不会随着表面活性剂浓度的增加而变化。但是,疏水性底物(PCP)的降解受表面活性剂浓度的影响很大。由于表面活性剂,PCP降解较慢,并且不同的头基表面活性剂对PCP降解的抑制作用非常相似(TNP 10和Igepal CA 720)。这可能是由于表面活性剂螯合底物或干扰与膜相关的PCP降解酶造成的。这项工作有助于在存在和不存在表面活性剂的情况下有关PCP生物降解的知识体系。提供有关使用INT测量作为快速替代方法获取有关PCP生物降解信息的可能功效的信息;但是,此方法在预测RA2增长和PCP降解方面有严重的局限性。提供了有关表面活性剂如何影响污染物生物降解的更多信息,以及这些效应的可能机理。

著录项

  • 作者

    Song, Myoungsuk.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Environmental.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号