首页> 外文学位 >Studies on nanobubbles in aqueous solutions
【24h】

Studies on nanobubbles in aqueous solutions

机译:水溶液中纳米气泡的研究

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the nanobubbles in the aqueous solutions have been studied by using combination of static and dynamic laser light scattering (LLS), isothermal compressibility measurements and Zeta-potential measurements. We found that the nanobubbles extensively exist in aqueous solutions and the interface of each nanobubble is negatively charged. The addition of electrolytes can destabilize such interface to induce the coalescence of nanobubbles.;Chapter 1 briefly introduces the background, problems, applications as well as recent progress of the nanobubbles research. The relationship between the formation/stabilization of nanobubbles and the long-rang structures of water molecules, particularly the restructuring of water molecules at the water/gas interface, are emphasized.;Chapter 2 introduces the theories of static and dynamic light scattering and Zeta-potential measurements as well as the details of the instrument set-up. In this chapter, the fundamental equations of the scattering theory are figured out basis on the quasi-classical electrodynamics and combination of the statistical mechanics as well as molecular dynamic theory. Finally, the statistical properties of photon counting are discussed.;In chapter 3, aqueous solutions of tetrahydrofuran, ethanol, urea and alpha-cyclodextrin were studied by a combination of static and dynamic laser light scattering (LLS). In textbooks, these small organic molecules are soluble in water so that there should be no observable large structures or density fluctuation in either static or dynamic LLS. However, a slow mode has been consistently observed in these aqueous solutions in dynamic LLS. Such a slow mode was previously attributed to some large complexes or supramolecular structures formed between water and these small organic molecules, Our current study reveals that it is actually due to the existence of small bubbles (∼100 nm in diameter) formed inside these solutions. Our direct evidence comes from the fact that it can be removed by repeated filtration and regenerated by air purging. Our results also indicate that the formation of such nanobubbles in small organic molecules aqueous solutions is a universal phenomenon. Such formed nanobubbles are rather stable. The measurement of isothermal compressibility confirms the existence of a low density micro-phase, presumably nanobubbles, in these aqueous solutions. Using a proposed structural model, i.e., each bubble is stabilized by small organic molecules adsorbed at the gas/water interface, we have, for the first time, estimated the pressure inside these nanobubbles.;In chapter 4, by using a combination of laser light scattering (LLS) and zeta-potential measurements, we investigated effects of salt concentration and pH on stability of the nanobubbles in alpha-cyclodextrin (alpha-CD) aqueous solutions. Our LLS results reveal that the nanobubbles are unstable in solutions with a higher ionic strength, just like colloidal particles in an aqueous dispersion, but become more stable in alkaline solutions. The zeta-potential measurement shows that the nanobubbles are negatively charged with an electric double layer, presumably due to the adsorption of negative OTT ions at the gas/water interface. It is this double layer that plays dual roles in the formation of stable nanobubbles in aqueous solutions of water-soluble organic molecules; namely, it not only provides a repulsive force to prevent the inter-bubble aggregation and coalescence, but also reduces the surface tension at the gas/water interface to decreases the internal pressure inside each bubble.;In chapter 5, the addition of salt can induce slow coalescence of nanobubbles (∼100 nm) in an aqueous solution of alpha-cyclodextrin (alpha-CD). A combination of static and dynamic laser light scattering was used to follow the coalescence. Our results reveal that its kinetic and structural properties follow some scaling laws; namely, the average size () of nanobubbles is related to their average mass () and the coalescence time (t) as dr and ∼ tgamma with two salt-concentration dependent scaling exponents (df and gamma) For a lower sodium chloride concentration (C NaCl = 40 mM), gamma = 0.13 +/- 0.01 and df = 1.71 +/- 0.02. The increase of CNaCl to 80 mM results in gamma = 0.32 +/- 0.01 and df = 1.99 +/- 0.01. The whole process has two main stages: the aggregation and the coalescence. At the lower C NaCl, the process essentially stops in the aggregation stage with some limited coalescence. At higher CNaCl leads the coalescence after the aggregation and results in large bubbles.
机译:本文通过静态和动态激光散射(LLS),等温压缩率测量和Zeta电位测量相结合的方法研究了水溶液中的纳米气泡。我们发现纳米气泡广泛存在于水溶液中,每个纳米气泡的界面带负电。电解质的添加会破坏这种界面的稳定性,从而引起纳米气泡的聚结。第一章简要介绍了纳米气泡的研究背景,存在的问题,应用以及最新进展。强调了纳米气泡的形成/稳定与水分子的长距离结构之间的关系,特别是水/气体界面处水分子的重构。;第二章介绍了静态和动态光散射以及Zeta-电位测量以及仪器设置的详细信息。在本章中,基于准经典电动力学以及统计力学和分子动力学理论的组合,推导了散射理论的基本方程。最后,讨论了光子计数的统计特性。第三章,结合静态和动态激光散射(LLS)研究了四氢呋喃,乙醇,尿素和α-环糊精的水溶液。在教科书中,这些小的有机分子可溶于水,因此在静态或动态LLS中不应出现可观察到的大结构或密度波动。但是,在动态LLS中在这些水溶液中始终观察到慢速模式。这种缓慢的模式先前归因于水和这些小的有机分子之间形成的一些大的络合物或超分子结构。我们目前的研究表明,这实际上是由于这些溶液内部形成了小气泡(直径约100 nm)所致。我们的直接证据来自这样一个事实,即可以通过反复过滤将其除去,并通过吹扫空气进行再生。我们的结果还表明,在有机小分子水溶液中形成此类纳米气泡是普遍现象。这样形成的纳米气泡相当稳定。等温压缩率的测量证实了在这些水溶液中存在低密度的微相,可能是纳米气泡。使用提出的结构模型,即每个气泡被吸附在气/水界面的有机小分子稳定,我们首次估计了这些纳米气泡内部的压力。在第4章中,通过使用激光的组合通过光散射(LLS)和Zeta电位测量,我们研究了盐浓度和pH对α-环糊精(α-CD)水溶液中纳米气泡稳定性的影响。我们的LLS结果表明,纳米气泡在具有较高离子强度的溶液中不稳定,就像在水分散液中的胶体颗粒一样,但在碱性溶液中变得更加稳定。 ζ电位测量结果表明,纳米气泡带有双电荷层,这可能是由于负OTT离子在气/水界面处的吸附所致。正是这种双层在水溶性有机分子的水溶液中形成稳定的纳米气泡中起着双重作用。即,它不仅提供排斥力以防止气泡间的聚集和聚结,而且降低了气/水界面处的表面张力,从而降低了每个气泡内部的内部压力。在第五章中,添加了盐罐在α-环糊精(α-CD)的水溶液中诱导纳米气泡(〜100 nm)缓慢聚结。静态和动态激光散射的组合用于跟踪合并。我们的结果表明,它的动力学和结构性质遵循一定的定律。即,纳米气泡的平均大小()与它们的平均质量()和聚结时间(t)的关系为dr和〜tgamma,其中两个盐浓度依赖性标度指数(df和gamma)对于较低的氯化钠浓度(C NaCl = 40 mM),γ= 0.13 +/- 0.01和df = 1.71 +/- 0.02。 CNaCl增至80 mM导致gamma = 0.32 +/- 0.01和df = 1.99 +/- 0.01。整个过程有两个主要阶段:聚集和合并。在较低的NaCl浓度下,该过程基本上在聚集阶段停止,并产生了一些有限的聚结。较高的CNaCl导致聚集后的聚结并导致大气泡。

著录项

  • 作者

    Jin, Fan.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Physical chemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号