首页> 外文学位 >Characterization of amphiphile-induced ordering transitions at aqueous-liquid crystal interfaces.
【24h】

Characterization of amphiphile-induced ordering transitions at aqueous-liquid crystal interfaces.

机译:两亲物在水-液晶界面处诱导的有序转变的表征。

获取原文
获取原文并翻译 | 示例

摘要

The studies described in this thesis were initiated in order to further understand the fundamental mechanisms underlying the amphiphile-driven liquid crystal (LC) anchoring transitions and to advance the development of LC-based analyte detection methodologies. The research reported within is organized into three main parts (described below).;First, the coupling of the LC mesogen with the analyte adsorbed at aqueous-LC interfaces is studied via the Langmuir-Schaefer transfer technique. By utilizing the Langmuir-Schaefer transfer technique, the preparation of a known areal density of self-assembled molecules at aqueous-LC interfaces is facilitated with precision; the proposition that analyte tail interactions with LC mesogens can lead to an LC anchoring transition is demonstrated as a proof of concept. Mixed phospholipid/glycolipid monolayers with known compositions at an aqueous-LC interface were then prepared with the transfer technique and specific binding events between glycolipid GalBeta1-3GalNAcBeta1-4(NeuAcAlpha2-3)GalBeta1-4GlcBeta1-1'-ceramide (GM1) and cholera toxin was amplified by the LC anchoring transition in contact with the self-assembled molecules at the aqueous-LC interface.;Second, nematic-force mediated solid microparticle organization at aqueous-LC interfaces was facilitated via a modified Langmuir-Schaefer transfer technique. The study demonstrated that LC topological defects result in unique microparticle assemblies that are not observed in isotropic fluids. We also report microparticle assemblies at aqueous-LC interfaces that are driven through dynamic and reversible ordering transitions of the LCs via analyte adsorption, which demonstrates the potential utility of microparticles for the amplification of biomolecular interaction at interfaces.;Last, spontaneous analyte adsorption from water to the surface of microdroplets of nematic liquid crystals suspended in water was investigated. We observe the spatially localized regions of the analyte endotoxin (lipopolysaccharide, LPS) at the aqueous-LC droplet interface. The corresponding limit of detection of LPS using this novel technique is in the pg/ml range. Preliminary experimental results regarding the mechanism of LC anchoring transition upon LPS adsorption are also discussed.;The results of the studies reported in this thesis, when combined, provide principles for LC-based label-free monitoring of aqueous streams for biomolecular species without the need for complex instrumentation and expensive reagents.
机译:本论文中所述的研究是为了进一步了解两亲性驱动液晶(LC)锚定过渡的基本机理,并推动基于LC的分析物检测方法学的发展而发起的。其中报告的研究分为三个主要部分(如下所述):首先,通过Langmuir-Schaefer转移技术研究了LC液晶元与在LC水溶液界面吸附的分析物的偶联。通过使用Langmuir-Schaefer转移技术,可以很容易地在LC水溶液界面制备已知的自组装分子单位密度。分析物尾部与LC液晶元的相互作用可能导致LC锚定转变的观点已得到论证。然后,通过转移技术制备了已知的在水-LC界面上具有已知组成的混合磷脂/糖脂单层,并在糖脂GalBeta1-3GalNAcBeta1-4(NeuAcAlpha2-3)GalBeta1-4GlcBeta1-1'-神经酰胺(GM1)和霍乱之间进行了特异性结合通过在LC-LC界面上与自组装分子接触的LC锚定过渡来扩增毒素。;第二,通过改进的Langmuir-Schaefer转移技术促进了在LC-LC界面上向列力介导的固体微粒组织。研究表明,LC拓扑缺陷会导致在各向同性流体中未观察到独特的微粒组装。我们还报告了水-LC界面处的微粒组装体,该组装体是通过分析物吸附通过LC的动态和可逆有序转换而驱动的,这证明了微粒在放大界面处生物分子相互作用方面的潜在效用。对悬浮在水中的向列型液晶的微滴表面进行了研究。我们在水-LC液滴界面观察到分析物内毒素(脂多糖,LPS)的空间定位区域。使用这种新技术检测LPS的相应极限在pg / ml范围内。还讨论了有关LPS吸附时LC锚固转变机理的初步实验结果。本论文报道的研究结果结合起来提供了无需使用LC标记即可监测生物分子水流的原理用于复杂的仪器和昂贵的试剂。

著录项

  • 作者

    Lin, I-Hsin.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号