首页> 外文学位 >Study of bacterial motility using optical tweezers.
【24h】

Study of bacterial motility using optical tweezers.

机译:使用光镊研究细菌运动。

获取原文
获取原文并翻译 | 示例

摘要

Bacteria are arguably the simplest of known microorganisms, forming a fundamental part of the world we live in. Many functions they perform are found in scaled-up versions in higher organisms. Among many advanced functions, bacteria possess the ability to move in search for nutrients and favorable growth conditions. Measurement of the dynamical variables associated with bacterial swimming has proven to be difficult due to the lack of an accurate and convenient tool. In the past optical traps have been used for the manipulation of microscopic objects and measurement of minute forces. Herein, I have devised techniques for use of optical traps for direct measurement of the dynamics of bacterial swimming and chemotaxis, shedding light on the propulsion apparatus and sensory systems. A detailed analysis is performed to explore the effects of non-local hydrodynamic interactions on the swimming of single cells. Due to the lack of reliable measurement techniques, experimentalists often use theoretical models to estimate bacterial dynamics, the validity of which are tested. I emphasize the shortcomings of the very popular Resistive Force Theory (RFT) and indicate how the more rigorous Slender Body Theory (SBT) is able to overcome the limitations. In addition the chemotaxis of the marine bacterial strain Vibrio alginolyticus is studied with the revelation of a previously unknown chemotactic mechanism. Direct observations showed that these cells are able to bend their flagella to impart direction changes, which is paramount for an effective search strategy. This interesting find opens several intriguing questions pertaining to chemotaxis.
机译:细菌可以说是已知微生物中最简单的一种,它构成了我们赖以生存的世界的基本组成部分。在高级生物中,细菌的许多功能可以按比例放大。在许多高级功能中,细菌具有寻找营养和良好生长条件的能力。由于缺乏精确和方便的工具,与细菌游泳有关的动力学变量的测量已被证明是困难的。过去,光阱已用于操纵微观物体和测量微小力。在这里,我已经设计出了使用光阱来直接测量细菌游动和趋化动力学,将光散射到推进装置和感觉系统上的技术。进行了详细的分析,以探索非局部流体动力相互作用对单细胞游动的影响。由于缺乏可靠的测量技术,实验人员经常使用理论模型来估计细菌动力学,并对其有效性进行测试。我强调非常流行的抵抗力理论(RFT)的缺点,并指出更严格的细长体理论(SBT)如何能够克服这些限制。另外,通过揭示先前未知的趋化机制,研究了海洋细菌菌株溶藻弧菌的趋化性。直接观察表明,这些细胞能够弯曲鞭毛以赋予方向变化,这对于有效的搜索策略至关重要。这个有趣的发现打开了几个与趋化性有关的有趣问题。

著录项

  • 作者

    Chattopadhyay, Suddhashil.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号