首页> 外文学位 >Lab-on-a-chip based biosensors for fundamental space biology research.
【24h】

Lab-on-a-chip based biosensors for fundamental space biology research.

机译:基于芯片实验室的生物传感器,用于基础空间生物学研究。

获取原文
获取原文并翻译 | 示例

摘要

The space environment poses significant challenges to the development and survival of biological organisms. Particularly the altered gravity of space is known to have an adverse affect on development of animals, plants and human beings. How organisms react to different gravity regimes such as the micro-g environment faced during space flight or the reduced gravity on Moon and Mars is an exciting area of research. One way to characterize physiological changes particularly in cultured cells and microorganisms is to measure the concentrations of extracellular biomolecules that play a central role in growth, development, form and function. Such studies are possible using modern electrochemical biosensors. The reduced payload requirements of spaceflight pose a constraint on the size of these biosensors. With the advent of Micro-Electro-Mechanical-Systems (MEMS) based biosensors or BioMEMS, it is now possible to produce miniaturized biosensors that can easily address this requirement. This work focuses on two such MEMS fabricated lab-on-a-chip based biosensors for understanding the fundamental space biology of model organisms. The first device is called the Cell Electrophysiology Lab-on-a-chip or the CEL-C biochip. This biochip was designed with the specific science objective of studying the gravity-sensing dynamics of the spore of the fern Ceratopteris richardii. The CEL-C biochip combines calcium sensing chemistries with microfabricated electrodes. After integration with signal processing electronics and an automated data acquisition system the biochip can perform simultaneous measurements on 16 spores simultaneously. The CEL-C biochip served as the enabling technology for ground based and reduced gravity studies on the C. richardii system. The results unearthed a previously unknown mechanism of gravity sensing in the spores possibly involving mechanosensory ion channels and pumps. The second lab-on-a-chip is called the CHO biochip and was developed with the goal of studying gravitational physiology of cyanobacteria in a space environment. This is a multianalyte sensing biochip which integrates sensors for pH, carbonate/bicarbonate and O2 on the same device. These three parameters play a central role in photosynthesis and carbon fixation in cyanobacteria. While both these biochips were designed to address a specific scientific problem, they can serve as general purpose tools for fundamental research, biological and biomedical applications. These foundation technologies have now opened doors for new lab-on-a-chip devices for neurophysiology research, biomedical diagnostics, environmental monitoring and agricultural applications.
机译:空间环境对生物有机体的发展和生存提出了重大挑战。众所周知,特别是空间重力的改变会对动植物的生长产生不利影响。生物如何对不同的重力状态做出反应,例如在太空飞行中面临的微g环境或月球和火星上的重力降低,这是令人兴奋的研究领域。表征生理变化(尤其是在培养的细胞和微生物中)的一种方法是测量在生长,发育,形式和功能中起关键作用的细胞外生物分子的浓度。使用现代电化学生物传感器可以进行此类研究。减少的有效载荷要求限制了这些生物传感器的尺寸。随着基于微机电系统(MEMS)的生物传感器或BioMEMS的出现,现在有可能生产出可以轻松满足这一要求的小型化生物传感器。这项工作的重点是两个这样的MEMS制造的基于芯片实验室的生物传感器,用于理解模型生物的基本空间生物学。第一个设备称为细胞电生理芯片实验室或CEL-C生物芯片。设计该生物芯片的特定科学目的是研究richardii蕨类蕨类植物孢子的重力感应动力学。 CEL-C生物芯片将钙传感化学与微细电极相结合。与信号处理电子设备和自动数据采集系统集成后,生物芯片可以同时对16个孢子进行同时测量。 CEL-C生物芯片是在C. richardii系统上进行地面和重力降低研究的使能技术。结果揭示了孢子中重力感应的一种先前未知的机制,可能涉及机械感应离子通道和泵。第二个芯片实验室称为CHO生物芯片,其开发目的是研究太空环境中蓝细菌的引力生理。这是一种多分析物传感生物芯片,在同一设备上集成了pH,碳酸盐/碳酸氢盐和O2传感器。这三个参数在蓝细菌的光合作用和碳固定中起着核心作用。虽然这两种生物芯片都旨在解决特定的科学问题,但它们可以用作基础研究,生物和生物医学应用的通用工具。这些基础技术现已为神经生理学研究,生物医学诊断,环境监测和农业应用中的新型芯片实验室设备打开了大门。

著录项

  • 作者

    Haque, Aeraj ul.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biology Cell.;Engineering Mechanical.;Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号