首页> 外文学位 >Quantitative Trait Loci for Brain Morphology and Complex Behavior: Neurogenetics in Cognitive Neuroscience.
【24h】

Quantitative Trait Loci for Brain Morphology and Complex Behavior: Neurogenetics in Cognitive Neuroscience.

机译:脑形态学和复杂行为的定量性状位点:认知神经科学中的神经遗传学。

获取原文
获取原文并翻译 | 示例

摘要

A growing area of cognitive neuroscience research is an exploratory, whole-genome approach to associating measurable phenotypes with genetic variation, in an effort to identify the basic biological causes of observable phenotypes. Most human whole-genome studies of interest to cognitive neuroscience, at present, investigate neuropsychiatric disorders---particularly wherein cognitive dysfunction is a defining feature---including schizophrenia, obsessive-compulsive disorder, and attention deficit-hyperactivity disorder. The data generated by human studies are augmented by animal studies of translational phenotypes with proven clinical value. A series of exploratory whole-genome mapping studies of phenotypes with translational clinical implications were conducted in a fixed genetic reference population of mice, the BXD recombinant inbred panel. Quantitative trait loci were mapped for neocortex (chr. 11, p0.05), noncortical brain (chr. 19, p0.05), and corpus callosum volume. (chr. 2, p.005). Reduced cortical volume and white mater anomies have been reported in clinical populations, particularly attention deficit-hyperactivity disorder (ADHD). White matter anomalies are common to several neuropsychiatric syndromes, including autism and schizophrenia. A potential translational phenotype related to cognitive control was tested in a mutant mouse related to ADHD and ADHD treatment: reversal learning in heterozygous norepinephrine transporter (NET) knockout mice, a genetic analogue of an ADHD treatment (atomoxetine, a selective NET inhibitor). As predicted by known effects of atomoxetine on reversal learning in rats, NET mutants have better reversal learning performance (p0.05), which subsequently validated our mouse version of reversal learning task as a useful translational endophenotype for ADHD. Finally, a genome-wide QTL mapping study of the reversal learning phenotype was conducted, and novel locus was mapped to chromosome 10 (p0.05). Subsequent informatics analyses were conducted to a filter the genes near the QTL and positional candidates were advanced. Syn3 was prioritized as one of the top two candidates by statistical analysis alone, and is a particularly promising candidate given that the protein affiliates with synaptic vesicles and is known to modulate inhibitory neural circuitry.
机译:认知神经科学研究的一个不断增长的领域是一种探索性的全基因组方法,将可测量的表型与遗传变异相关联,以努力确定可观察到的表型的基本生物学原因。目前,大多数人类对认知神经科学感兴趣的全基因组研究都在研究神经精神疾病(尤其是其中认知功能障碍是一种定义特征),包括精神分裂症,强迫症和注意力缺陷多动障碍。人类研究产生的数据通过动物表型转化表型的动物研究得到了补充,具有公认的临床价值。在固定遗传参考小鼠(BXD重组近交系)中进行了一系列具有翻译临床意义的表型探索性全基因组定位研究。定量性状基因座被映射为新皮层(第11章,p <0.05),非皮层脑(第19章,p <0.05)和call体体积。 (第2章,p <.005)。在临床人群中,尤其是注意缺陷多动障碍(ADHD)中,皮层体积减少和白色物质异常的报道。白质异常是几种神经精神病综合症(包括自闭症和精神分裂症)所共有的。在与ADHD和ADHD治疗相关的突变小鼠中测试了与认知控制有关的潜在翻译表型:杂合去甲肾上腺素转运蛋白(NET)敲除小鼠的逆向学习,ADHD治疗的遗传类似物(atomoxetine,选择性NET抑制剂)。正如阿莫西汀对大鼠逆向学习的已知作用所预测的那样,NET突变体具有更好的逆向学习性能(p <0.05),随后证实了我们的逆向学习任务的小鼠版本是ADHD的有用翻译内表型。最后,进行了逆向学习表型的全基因组QTL定位研究,并将新基因座定位于10号染色体(p <0.05)。随后进行了信息学分析,以筛选QTL附近的基因,并提高了候选位置。仅通过统计分析,Syn3便被确定为排名前两位的候选药物之一,并且鉴于该蛋白与突触小泡相关并且已知可调节抑制性神经回路,因此它是一个特别有前途的候选药物。

著录项

  • 作者

    Laughlin, Rick E.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Neuroscience.;Biology Genetics.;Psychology Psychobiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号