首页> 外文学位 >Improvement of in vitro fertilization (IVF) technology through microfluidics.
【24h】

Improvement of in vitro fertilization (IVF) technology through microfluidics.

机译:通过微流控技术改进体外受精(IVF)技术。

获取原文
获取原文并翻译 | 示例

摘要

Despite advances in in vitro manipulation of pre-implantation embryos, there is still a lag in the quality of embryos produced in vitro leading to lower pregnancy rates compared to embryos produced in vivo. Reducing the incidence of high-order multiple pregnancies while maintaining the overall in vitro fertilization (IVF) success rate is a holy grail of human IVF and would be greatly assisted by the ability to produce and identify the highest quality embryos. A promising new technology, microfluidics, does exist and is becoming increasingly studied. A challenge of studying embryo on microfluidic device is that preimplantation mouse embryos are highly sensitive cells and their development is affected greatly by osmolality shifts as will occur in devices with thin poly(dimethylsiloxane) (PDMS) membranes even in typical humidified cell culture incubators. Here we characterized and resolved evaporation mediated osmolality shifts that constrained microfluidic cell culture in Poly(dimethylsiloxane) devices. Next, we developed a dynamic microfunnel embryo culture system would enhance outcomes by better mimicking the fluid mechanical stimulation and chemical agitation embryos experience in vivo from ciliary currents and oviductal contractions. Using a mouse embryo model, average cell counts for blastocysts after 96 hours of culture in dynamic microfunnel conditions increased 70% over that of conventional static cultures. Importantly, the dynamic microfunnel cultures significantly improved embryo implantation and ongoing pregnancy rates over static culture to a level that approached that of in utero -derived preimplantation embryos. Lastly, we reported a new computerized microfluidic real time embryo culture and assay device that can perform automated periodic analyses of embryo metabolism over 24 hrs. Biochemical methods for embryo analysis based on measurement of metabolic rates do exist, but are not practical for clinical use because of difficulties in manipulating precise amounts of sample and reagents at the sub-microliter scale. The convenient, non-vasive, reliable, and automated nature of these assays open the way for development of practical single embryo biochemical analysis systems. Collectively, these results confirm that microfluidic technology can be used to properly mimic a broad range of the embryo environments seen in physiology and to assess embryo viability for in vitro fertilization clinics.
机译:尽管在植入前胚胎的体外操作方面取得了进步,但与体内产生的胚胎相比,体外产生的胚胎的质量仍然落后于导致较低的妊娠率。在保持总体体外受精(IVF)成功率的同时降低高位多胎妊娠的发生率是人类IVF的一个圣杯,并且可以通过生产和鉴定最高品质的胚胎而得到极大的帮助。确实存在有希望的新技术微流控技术,并且正在对其进行越来越多的研究。在微流控设备上研究胚胎的挑战是,植入前的小鼠胚胎是高度敏感的细胞,并且渗透压变化会极大地影响其发育,就像在具有典型聚湿膜的聚二甲基硅氧烷(PDMS)膜的设备中那样,即使在典型的湿润细胞培养箱中也是如此。在这里,我们表征并解决了蒸发介导的重量克分子渗透压摩尔浓度变化,这限制了聚二甲基硅氧烷设备中的微流体细胞培养。接下来,我们开发了一种动态微漏斗胚胎培养系统,该系统将通过更好地模拟睫状电流和输卵管收缩对体内的流体机械刺激和化学搅拌胚胎的作用,从而提高结果。使用小鼠胚胎模型,在动态微漏斗条件下培养96小时后,胚泡的平均细胞数比常规静态培养物增加了70%。重要的是,与静态培养相比,动态微漏斗培养显着改善了胚胎着床和持续的妊娠率,使其达到了子宫内植入前胚胎的水平。最后,我们报告了一种新型的计算机化微流控实时胚胎培养和测定设备,该设备可以在24小时内对胚胎代谢进行自动定期分析。确实存在基于代谢率测量的胚胎分析生化方法,但由于难以处理亚微升级的精确量的样品和试剂,因此在临床上并不实用。这些测定法的方便,无血管,可靠和自动化性质为开发实用的单胚生化分析系统开辟了道路。总而言之,这些结果证实了微流体技术可用于适当地模仿生理学中所见的各种胚胎环境,并评估体外受精诊所的胚胎生存能力。

著录项

  • 作者

    Heo, Yunseok.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号