首页> 外文学位 >Avian Feathers: An Examination of Lightweight Resilience and Bioinspired Designs
【24h】

Avian Feathers: An Examination of Lightweight Resilience and Bioinspired Designs

机译:禽羽毛:对轻型弹性和生物启发性设计的检验

获取原文
获取原文并翻译 | 示例

摘要

In bird flight, the majority of the wing surface consists of highly refined and hierarchically organized beta-keratinous feathers. Thus, flight feathers contain ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. Their design involves two main parts: a central shaft which prescribes stiffness and lateral vanes that allow for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface and ensuring lift. Microhooks at the end of barbules hold barbs tightly together, providing a close-knit, unified structure and enabling repair of the vane through the reattachment of un-hooked junctions.;In this dissertation, unique aspects of feather architecture are explored to uncover principles translatable to the design of modern aerospace materials and structures. Specifically, understudied aspects of the feather's lightweight yet resilient properties are investigated. This research has revealed several novel characteristics of the feather. Allometric scaling relationships are developed linking the geometry of a bird's wing components to its flight characteristics and total mass. Barbule spacing within the feather vane is found to be 8--16 microm for birds ranging from 0.02--11 kg. Additionally, it is discovered that strength is recovered with the shape recovery property of feathers, and a mechanism for this phenomenon is proposed. Barbule adhesion within the vane is found to prevent barbs from twisting in flexure, maintaining the vane's stiffness, and the extent to which unzipping these connections affects the feather's ability to capture air is related to barb shape. Directional permeability of the feather vane is experimentally confirmed and related to the intricate microstructure of barbules. Lastly, the exceptional architecture of the feather motivated the design of novel bioinspired structures with tailored and unique properties. The avian feather serves as an excellent springboard for designs that can be adapted to enhance synthetic materials and structures.
机译:在鸟类飞行中,机翼的大部分表面由高度精炼且层次分明的β-角蛋白羽毛组成。因此,飞羽包含精巧的组件组合,可优化升力,刚度,空气动力学和抗破坏性。他们的设计包括两个主要部分:规定刚性的中心轴和允许空气捕获的侧向叶片。在羽毛叶片内,倒钩从竖井分支,倒钩从倒钩分支,形成平坦的表面并确保升力。叶片末端的微型挂钩将倒钩紧密地固定在一起,提供了紧密的,统一的结构,并通过重新连接未挂钩的接合点来修复叶片。在本论文中,本文探索了羽毛结构的独特方面以揭示可翻译的原理设计现代航空航天材料和结构。具体来说,研究了羽毛的轻质而有弹性的特性的未被研究的方面。这项研究揭示了羽毛的一些新颖特征。建立了异形比例关系,将鸟的翅膀组件的几何形状与其飞行特性和总质量联系起来。对于0.02--11千克的鸟类,羽毛叶片内的小叶片间距为8--16微米。另外,发现强度随着羽毛的形状恢复特性而恢复,并且提出了用于这种现象的机理。发现叶片内叶片的粘附力可防止叶片倒钩弯曲,从而保持叶片的刚度,而解开这些连接影响羽毛吸收空气的能力的程度与叶片形状有关。羽毛叶片的方向渗透性在实验上得到证实,并且与叶片复杂的微观结构有关。最后,羽毛的非凡结构激发了具有个性化和独特属性的新颖生物启发结构的设计。禽羽毛是设计的极佳跳板,可以对其进行改进以增强合成材料和结构。

著录项

  • 作者

    Sullivan, Tarah Naoe.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号