首页> 外文期刊>Materials today >Extreme lightweight structures: avian feathers and bones
【24h】

Extreme lightweight structures: avian feathers and bones

机译:极轻的结构:禽羽毛和骨头

获取原文
           

摘要

Flight is not the exclusive domain of birds; mammals (bats), insects, and some fish have independently developed this ability by the process of convergent evolution. Birds, however, greatly outperform other flying animals in efficiency and duration; for example the common swift (Apus apus) has recently been reported to regularly fly for periods of 10 months during migration. Birds owe this extraordinary capability to feathers and bones, which are extreme lightweight biological materials. They achieve this crucial function through their efficient design spanning multiple length scales. Both feathers and bones have unusual combinations of structural features organized hierarchically from nano- to macroscale and enable a balance between lightweight and bending/torsional stiffness and strength. The complementary features between the avian bone and feather are reviewed here, for the first time, and provide insights into nature's approach at creating structures optimized for flight. We reveal a novel aspect of the feather vane, showing that its barbule spacing is consistently within the range 8–16?μm for birds of hugely different masses such as Anna's Hummingbird (Calypte anna) (4?g) and the Andean Condor (Vultur gryphus) (11,000?g). Features of the feather and bone are examined using the structure-property relationships that define Materials Science. We elucidate the role of aerodynamic loading on observed reinforced macrostructural features and efficiently tailored shapes adapted for specialized applications, as well as composite material utilization. These unique features will inspire synthetic structures with maximized performance/weight for potential use in future transportation systems.
机译:飞行不是鸟类的专属领域;哺乳动物(蝙蝠),昆虫和一些鱼类通过融合进化过程独立地发展了这种能力。然而,鸟类在效率和持续时间方面大大优于其他飞行动物。例如,最近有报道称普通迅捷(Apus apus)在迁徙期间会定期飞行10个月。鸟类的这种非凡能力归功于羽毛和骨头,它们是极其轻便的生物材料。他们通过跨多个长度标尺的有效设计来实现这一关键功能。羽毛和骨头都具有不寻常的结构特征组合,从纳米级到宏观级都有层次地组织,可以在轻质,弯曲/扭转刚度和强度之间取得平衡。禽骨头和羽毛之间的互补特征在这里是第一次审查,并提供了洞察自然界创造优化飞行结构的方法。我们揭示了羽毛叶片的一个新颖方面,即对于质量差异极大的鸟类,例如安娜的蜂鸟(Calypte anna)(4?g)和安第斯秃鹰(Vultur),其叶片间距始终在8-16µm范围内鹰嘴豆(11,000?g)。使用定义“材料科学”的结构-属性关系来检查羽毛和骨骼的特征。我们阐明了气动载荷在观察到的增强宏观结构特征和有效定制的形状上的作用,这些形状适用于特殊应用以及复合材料的利用。这些独特的功能将激发具有最大性能/重量的合成结构,以备将来在运输系统中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号