首页> 外文学位 >Pattern transfer from nanoparticle arrays.
【24h】

Pattern transfer from nanoparticle arrays.

机译:来自纳米颗粒阵列的图案转移。

获取原文
获取原文并翻译 | 示例

摘要

This project contributes to the long-term extensibility of bit-patterned media (BPM), by removing obstacles to using a new and smaller class of self-assembling materials: surfactant-coated nanoparticles. Self-assembly rapidly produces regular patterns of small features over large areas. If these patterns can be used as templates for magnetic bits, the resulting media would have both high capacity and high bit density. The data storage industry has identified block copolymers (BCP) as the self-assembling technology for the first generation of BPM. Arrays of surfactant-coated nanoparticles have long shown higher feature densities than BCP, but their patterns could not previously be transferred into underlying substrates. I identify one key obstacle that has prevented this pattern transfer: the particles undergo a disordering transition during etching which I have called "cracking". I compare several approaches to measuring the degree of cracking, and I develop two novel techniques for preventing it and allowing pattern transfer. I demonstrate two different kinds of pattern transfer: positive (dots) and negative (antidots). To make dots, I etch the substrate between the particles with a directional CF4-based reactive ion etch (RIE). I find the ultrasmall gaps (just 2 nm) cause a tremendous slowdown in the etch rate, by a factor of 10 or more---an observation of fundamental significance for any pattern transfer at ultrahigh bit densities. Antidots are made by depositing material in the interstices, then removing the particles to leave behind a contiguous inorganic lattice. This lattice can itself be used as an etch mask for CF4-based RIE, in order to increase the height contrast. The antidot process promises great generality in choice of materials, both for the antidot lattice and the particles themselves; here, I present lattices of Al and Cr, ternplated from arrays of 13.7 nm-diameter Fe3O4 or 30 nm-diameter MnO nanoparticles. The fidelity of transfer is also noticeably better for antidots than for dots, making antidots the more promising technique for industrial applications. The smallest period for which I have shown pattern transfer (15.7 nm) is comparable to (but slightly smaller than) the smallest period currently shown for pattern transfer from block copolymers (17 nm); hence, my results compare favorably with the state of the art. Ultimately, by demonstrating that surfactant-coated nanoparticles can be used as pattern masks, this work increases their viability as an option to continue the exponential growth of bit density in magnetic storage media.
机译:该项目通过消除使用新型和较小类型的自组装材料:表面活性剂涂覆的纳米粒子的障碍,为位图介质(BPM)的长期可扩展性做出了贡献。自组装可在大面积区域快速生成规则的小特征图案。如果这些图案可用作磁性位的模板,那么生成的媒体将具有高容量和高位密度。数据存储行业已将嵌段共聚物(BCP)确定为第一代BPM的自组装技术。长期以来,表面活性剂涂覆的纳米颗粒阵列显示出比BCP更高的特征密度,但以前无法将其图案转移到下面的基材中。我确定了阻止这种图案转移的一个关键障碍:在蚀刻过程中,颗粒经历了无序转变,我称之为“裂纹”。我比较了几种测量裂纹程度的方法,并开发了两种防止裂纹并允许图案转移的新颖技术。我演示了两种不同类型的模式转移:正(点)和负(点)。为了制造点,我使用基于CF4的定向反应离子蚀刻(RIE)来蚀刻颗粒之间的基板。我发现超小间隙(仅2 nm)会导致蚀刻速率大大降低,降低10倍甚至更多,这是对超高位密度下任何图案转移的基本意义的观察。通过在空隙中沉积材料,然后去除颗粒以留下连续的无机晶格,可以制成解毒剂。该晶格本身可以用作基于CF4的RIE的蚀刻掩模,以增加高度对比度。解毒剂工艺有望在解毒剂晶格和颗粒本身的材料选择上实现极大的通用性。在这里,我展示了Al和Cr的晶格,它们是由直径为13.7 nm的Fe3O4或直径为30 nm的MnO纳米颗粒的阵列所组成。解毒剂的转移保真度也比点剂好得多,这使解毒剂成为工业应用中更有希望的技术。我已经显示出图案转移的最小时间段(15.7 nm)与目前显示的从嵌段共聚物中转移出图案的最小时间段(17 nm)相当(但略小于)。因此,我的研究结果与最新技术水平相比具有优势。最终,通过证明涂覆有表面活性剂的纳米颗粒可以用作图案掩模,这项工作增加了它们的生存能力,可以作为继续在磁存储介质中进行比特密度指数增长的一种选择。

著录项

  • 作者

    Hogg, Charles R., III.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号