首页> 外文学位 >Development of poly(3-octylthiophene) thin films for regulating osteoblast growth.
【24h】

Development of poly(3-octylthiophene) thin films for regulating osteoblast growth.

机译:用于调节成骨细胞生长的聚(3-辛基噻吩)薄膜的开发。

获取原文
获取原文并翻译 | 示例

摘要

The investigation of electrically conducting polymers (CPs) for use in biomedical applications has expanded greatly since the discovery in the 1980s that these materials are compatible with many biological molecules. CPs are able, via electrical stimulation, to modulate the behavior of certain electrically responsive cells (i.e., nerve, muscle, bone, and cardiac cells). CPs such as polypyrrole, polyaniline, and polythiophene have a conjugated structure that upon doping allows interchain hopping of electrons. In addition, most CPs have numerous attractive properties for biomedical applications, including the ability to transfer charges, to entrap and release biological molecules, and the potential to vary their chemical, electrical, and physical properties. Even though there has been significant progress, many biomedical issues remain unexplored, especially the interaction between different cell types (e.g., neurons, fibroblasts, and osteoblasts) and substituted polythiophenes (PTs) in both the undoped and doped states. PTs are one of the most widely studied CPs, therefore ample knowledge exists on their chemical, electrical, and physical properties. They also have great potential for biomedical applications as they have been used as biosensors, molecular actuators, and cell support substrates.;The overall objective of this work is to assess the suitability of poly(3-octylthiophene) (P3OT) to sustain MC3T3-E1 osteoblast attachment and growth. The central hypothesis is that specific P3OT film properties (e.g., thickness, film preparation conditions, and level of doping) are able to regulate osteoblast functions (e.g., attachment and proliferation). Discrete and combinatorial techniques were utilized in this work to prepare and characterize thin films of P3OT, a semiconductor in its undoped state, and to study its interaction with MC3T3-E1 osteoblasts. The MC3T3-E1 cell line was chosen because it is well understood, is known to exhibit a developmental sequence analogous to osteoblasts in bone tissue, and because of previous success in regulating proliferation and attachment using conducting substrates.;In this work we demonstrate that P3OT is a suitable surface to sustain MC3T3-E1 attachment and proliferation with no observed cytotoxicity. We show that P3OT has an effect on MC3T3-E1 attachment and proliferation as area, circularity, and proliferation ratio are significantly different for P3OT compared to control surfaces. We also demonstrate that P3OT doping and film preparation conditions have an effect on osteoblast attachment and proliferation but that thickness over a low and high range does not affect osteoblast functions.;This work is significant because it contributes to the growing area of conducting polymers in biomedical applications and establishes P3OT as a potential cell substrate that sustains MC3T3-E1 attachment and promotes high levels of cell proliferation.
机译:自1980年代发现这些材料与许多生物分子兼容以来,用于生物医学应用的导电聚合物(CP)的研究已大大扩展。 CP能够通过电刺激来调节某些电响应细胞(即神经,肌肉,骨骼和心脏细胞)的行为。 CP(例如聚吡咯,聚苯胺和聚噻吩)具有共轭结构,该结构在掺杂时允许电子发生链间跳跃。此外,大多数CP在生物医学应用中具有众多吸引人的特性,包括转移电荷,捕获和释放生物分子的能力以及改变其化学,电和物理特性的潜力。尽管已经取得了重大进展,但许多生物医学问题仍待探索,尤其是在未掺杂和掺杂状态下,不同细胞类型(例如神经元,成纤维细胞和成骨细胞)与取代聚噻吩(PTs)之间的相互作用。 PT是研究最广泛的CP之一,因此在其化学,电学和物理性质方面存在丰富的知识。它们还被用作生物传感器,分子致动器和细胞支持基质,在生物医学应用中也具有巨大潜力。这项工作的总体目标是评估聚(3-辛基噻吩)(P3OT)维持MC3T3-的适用性。 E1成骨细胞的附着和生长。中心假设是特定的P3OT膜特性(例如厚度,膜制备条件和掺杂水平)能够调节成骨细胞功能(例如附着和增殖)。在这项工作中,采用离散和组合技术来制备和表征P3OT(未掺杂状态的半导体)的薄膜,并研究其与MC3T3-E1成骨细胞的相互作用。选择MC3T3-E1细胞系的原因是众所周知,它显示出与骨组织中成骨细胞相似的发育序列,并且由于以前使用导电底物成功调控增殖和附着的缘故。在这项工作中,我们证明了P3OT是维持MC3T3-E1附着和增殖的合适表面,没有观察到细胞毒性。我们显示P3OT对MC3T3-E1的附着和增殖有影响,因为与对照表面相比,P3OT的面积,圆形度和增殖率显着不同。我们还证明了P3OT掺杂和成膜条件对成骨细胞的附着和增殖有影响,但在高低范围内的厚度不会影响成骨细胞的功能。;这项工作意义重大,因为它有助于生物医学中导电聚合物的生长面积的增加应用并确立P3OT作为维持MC3T3-E1附着并促进高水平细胞增殖的潜在细胞底物。

著录项

  • 作者

    Rincon-Rosenbaum, Charlene.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程 ; 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号