首页> 外文学位 >Nanomorphology control and novel materials studies in polymer/fullerene bulk heterojunction solar cells.
【24h】

Nanomorphology control and novel materials studies in polymer/fullerene bulk heterojunction solar cells.

机译:聚合物/富勒烯本体异质结太阳能电池的纳米形态控制和新型材料研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on improving the efficiency of polymer/fullerene bulk heterojunction solar cells from two directions: (i) understanding the nanomorphology-efficiency relationship and controlling the active layer morphology during its formation; (ii) developing new materials for both electron donors and electron acceptors in the polymer solar cells.;A solvent annealing approach is successfully demonstrated to control the morphology and increase device efficiency in poly(3-hexylthiophene):fullerene solar cells. A detailed evolution study on this approach using absorption, photoluminescence, external quantum efficiency, atomic force microscopy, and grazing incidence X-ray diffraction techniques leads to following understanding: the optimum nanomorphology must be a balance between large interfacial area for exciton dissociation and continuous pathways for carrier transportation. 4.4% efficiency is demonstrated in this system. Effects of solvent mixture on the nanoscale phase separation are studied further. The donor/acceptor components in the active layer can "intelligently" phase separate into an optimum morphology during the spin-coating process and no further treatment is necessary. Devices with the solvent mixture show about 10 times higher efficiency compared to those devices fabricated without the additive solvent fabricated under the same condition. A model and additive solvent selection rule are proposed to explain the phenomenon.;To address the absorption mismatch with solar spectrum, two novel low band gap copolymers containing 3-alkoxythiophene have been synthesized with the band gap of 1.64 and 1.77 eV, respectively. In addition, novel electron acceptors also hold great promise. A 50% increase in short-circuit current is demonstrated by using (6,6)-phenyl-C71-butyric acid methyl ester (C70-PCBM) to replace (6,6)-phenyl-C61-butyric acid methyl ester (PCBM). As the result, 2.4% power conversion efficiency is achieved for low band gap polymer based solar cells. Another low band gap polymer, an ester group modified polythieno[3,4-b]thiophene, is utilized to fabricate near-infrared photodetector with external quantum efficiency exceeding 38%, response bandwidth of 4 MHz, and the noise equivalent power of 3.85 x 10-12 W/Hz1/2 at 850 nm. An all-polymer based optocoupler with high current-density-transfer-ratio (1.5%) and fast response time (500 kHz) is also demonstrated in this work.
机译:本论文着重从两个方面提高聚合物/富勒烯本体异质结太阳能电池的效率:(i)了解纳米形态与效率的关系,并在其形成过程中控制活性层的形态; (ii)开发用于聚合物太阳能电池中电子给体和电子受体的新材料。成功地证明了溶剂退火方法可控制聚(3-己基噻吩):富勒烯太阳能电池的形貌并提高器件效率。使用吸收,光致发光,外部量子效率,原子力显微镜和掠入射X射线衍射技术对该方法进行详细的进化研究,得出以下理解:最佳的纳米形态必须是激子解离的大界面面积与连续路径之间的平衡用于承运人运输。该系统显示出4.4%的效率。进一步研究了溶剂混合物对纳米级相分离的影响。活性层中的施主/受主组分可以在旋涂过程中“智能地”相分离成最佳形态,并且不需要进一步的处理。与没有在相同条件下制造添加剂溶剂的设备相比,具有溶剂混合物的设备的效率要高约10倍。提出了一个模型和添加剂溶剂选择规则来解释这种现象。为了解决与太阳光谱的吸收失配,已经合成了两种新颖的含有3-烷氧基噻吩的低带隙共聚物,其带隙分别为1.64和1.77eV。此外,新型电子受体也具有广阔的前景。通过使用(6,6)-苯基-C71-丁酸甲酯(C70-PCBM)代替(6,6)-苯基-C61-丁酸甲酯(PCBM),证明短路电流增加了50% )。结果,对于低带隙聚合物基太阳能电池实现了2.4%的功率转换效率。另一种低带隙聚合物,酯基改性的聚噻吩并[3,4-b]噻吩,被用于制造近红外光电探测器,其外部量子效率超过38%,响应带宽为4 MHz,噪声等效功率为3.85 x在850 nm下为10-12 W / Hz1 / 2。这项工作还展示了一种全聚合物基光耦合器,具有高电流密度传输比(1.5%)和快速响应时间(500 kHz)。

著录项

  • 作者

    Yao, Yan.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Energy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号