首页> 外文学位 >Molecular-level changes in collagen due to in vitro tensile overload in a tendon model.
【24h】

Molecular-level changes in collagen due to in vitro tensile overload in a tendon model.

机译:肌腱模型中由于体外拉伸超负荷导致的胶原分子水平变化。

获取原文
获取原文并翻译 | 示例

摘要

Soft tissue injuries, such as common ligament sprains and tendon strains, are poorly understood at the molecular level. This thesis reports the first in-depth investigation of molecular-level changes in fibrous collagen due to in vitro tensile overload. A conceptual model is presented that provides a mechanistic explanation of how and why molecular collagen changes upon tensile overload of a tendon.;Using an assortment of biochemical and biophysical techniques, hypotheses based on the model were tested, confirmed and the model was substantiated. In vitro tensile overload of a newly characterized bovine tail tendon (BTT) model resulted in a 3- to 4-fold increase in proteolysis of collagen by (acetyl)trypsin. This was mirrored by a decrease in thermal stability of approximately 3°C (measured with differential scanning calorimetry). Interestingly, the data also indicated no significant change in molecular conformation (denaturation) due to tensile overload. These new results can be explained by an increase in the gyration of the collagen molecules' intrahelical hydroxyproline-free thermally labile domains caused by disruption of the fibrillar lattice structure. A novel application of hydrothermal isometric tension (HIT) testing showed that complete tissue rupture was not required to decrease the thermal stability and additional overloading cycles furthered the effect. In addition, increased covalent crosslinking density and stability inhibited the decrease in thermal stability by inhibiting lattice structure deformation.;This thesis represents an original and significant contribution to fundamental (bio)materials science concerning the most important structural biopolymer, fibrous collagen. It also has both important clinical and biomedical implications in treatment of injuries and tissue engineering respectively.
机译:在分子水平上对软组织损伤,例如常见的韧带扭伤和肌腱拉伤,了解甚少。本论文首次报道了由于体外拉伸超负荷引起的纤维胶原蛋白分子水平变化的首次深入研究。提出了一个概念模型,该模型提供了对肌腱拉伸超负荷时分子胶原蛋白如何以及为何发生变化的机理解释。;使用各种生化和生物物理技术,对基于模型的假设进行了测试,证实和证实。新表征的牛尾腱(BTT)模型的体外拉伸超负荷导致(乙酰基)胰蛋白酶的胶原蛋白水解增加3到4倍。这通过热稳定性下降约3°C(用差示扫描量热法测量)来反映。有趣的是,数据还表明,由于拉伸过载,分子构象(变性)没有明显变化。这些新结果可以通过由原纤维晶格结构破坏引起的胶原分子无螺旋内羟基脯氨酸的热不稳定结构域的回转增加来解释。水热等距张力(HIT)测试的一种新颖应用表明,不需要完整的组织破裂来降低热稳定性,并且额外的超负荷循环可进一步增强效果。此外,共价交联密度和稳定性的提高通过抑制晶格结构变形而抑制了热稳定性的下降。本论文代表了有关最重要的结构生物聚合物纤维胶原的基础(生物)材料科学的原始和重要贡献。它还分别对损伤的治疗和组织工程具有重要的临床和生物医学意义。

著录项

  • 作者

    Willett, Thomas L.;

  • 作者单位

    Dalhousie University (Canada).;

  • 授予单位 Dalhousie University (Canada).;
  • 学科 Biology Animal Physiology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号