首页> 外文学位 >Improved chemistry models for DSMC simulations of ionized rarefied hypersonic flows.
【24h】

Improved chemistry models for DSMC simulations of ionized rarefied hypersonic flows.

机译:用于电离稀疏高超音速流的DSMC模拟的改进化学模型。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes research in modeling rarefied, nonequilibrium hypersonic flows using the direct simulation Monte Carlo (DSMC) method. Modeling of chemical reactions and ionization processes in highly nonequilibrium flows is an important aspect in the simulation of flow fields and radiation of high-speed reentry vehicles. To develop a physically accurate chemical reaction model for use in DSMC, the molecular dynamics/quasi-classical trajectory (MD/QCT) method was utilized. For modeling rarefied, ionized hypersonic flows, a charge neutrality approach was followed, and an improved chemistry model involving electron collision and energy exchange mechanisms was developed.;The MD/QCT chemical reaction model was applied for the O+HCl → OH+Cl reaction, which is an important exchange reaction in atmospheric-side jet interaction flows. It was found that the MD/QCT model using a recent state-of-the-art potential energy surface predicted good agreement with the total collision energy model because this reaction is a low enthalpy reaction and does not show strong favoring of internal modes. For strong favoring reactions, one should verify both reaction and collision cross sections using the MD/QCT method if an accurate potential energy surface is available.;Ionized hypersonic flows for the Stardust blunt body were simulated in DSMC between 68.9 and 100 km altitudes for a free stream velocity higher than 10 km/s. The flow modeling included ionization processes and energy exchange assuming that charge neutrality exists in the bow-shock region. Accurate modeling of electron scattering collision processes and electron-vibration energy exchange using Lee's relaxation time for the first time in DSMC is presented and was found to significantly influence the vibrational and electron temperatures. For further analysis, the DSMC Stardust simulations were compared with computational fluid dynamics (CFD) results at 68.9 and 80 km altitudes. Breakdown effects were investigated, and influences of shock stand-off distance and temperature profiles were observed. Radiation was calculated using the Nonequilibrium Air Radiation code, and it was found that the new DSMC chemistry and excitation models significantly affected the N and O radiation in the ultraviolet range. Preliminary results show that CFD predicts one order of magnitude higher radiation than DSMC overall.
机译:本文介绍了使用直接模拟蒙特卡洛(DSMC)方法对稀有非平衡高超音速流进行建模的研究。在高度非平衡流中对化学反应和电离过程进行建模是高速折返飞行器流场和辐射模拟中的重要方面。为了开发用于DSMC的物理准确的化学反应模型,利用了分子动力学/准经典轨迹(MD / QCT)方法。为了模拟稀薄的,离子化的高超声速流,遵循电荷中和方法,并建立了包含电子碰撞和能量交换机理的改进化学模型。;将MD / QCT化学反应模型用于O + HCl→OH + Cl反应,这是大气侧射流相互作用流中的重要交换反应。已发现使用最新技术水平的势能面的MD / QCT模型与总碰撞能模型具有良好的一致性,因为该反应是低焓反应,并且没有表现出对内部模式的强烈支持。对于强烈的有利反应,如果可以得到准确的势能面,则应使用MD / QCT方法验证反应截面和碰撞截面。在68.9至100 km高度的DSMC中,对星尘钝体的电离高超声速流进行了模拟。自由流速度高于10 km / s。流动模型包括电离过程和能量交换,假设在弓形冲击区中存在电荷中性。在DSMC中首次使用Lee的弛豫时间对电子散射碰撞过程和电子振动能量交换进行了精确建模,并发现该模型显着影响振动和电子温度。为了进一步分析,将DSMC星尘模拟与68.9和80 km高度的计算流体动力学(CFD)结果进行了比较。研究了击穿效应,并观察了冲击距离和温度分布的影响。使用非平衡空气辐射代码计算辐射,发现新的DSMC化学和激发模型会显着影响紫外线范围内的N和O辐射。初步结果表明,CFD预测的辐射要比DSMC总体高一个数量级。

著录项

  • 作者

    Ozawa, Takashi.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号