首页> 外文学位 >Solid-Oxide Fuel Cell Electrode Microstructures: Making Sense of the Internal Framework Affecting Gas Transport.
【24h】

Solid-Oxide Fuel Cell Electrode Microstructures: Making Sense of the Internal Framework Affecting Gas Transport.

机译:固体氧化物燃料电池电极的微结构:影响气体传输的内部框架的意义。

获取原文
获取原文并翻译 | 示例

摘要

Optimal electrodes for solid-oxide fuel cells will combine high porosity for gas diffusion, high phase connectivity for ion and electron conduction, and high surface area for chemical and electrochemical reactions. Tracer-diffusion simulations are used to gain a better understanding of the interplay between microstructure and transport in porous materials. Results indicate that the coefficient of diffusion through a porous medium is a function of the details of the internal geometry (microscopic) and porosity (macroscopic). I report that current solid-oxide fuel cell electrodes produced from high-temperature sintering of ceramic powders severely hinder gas transport because the resulting structures are highly tortuous, complex three-dimensional networks. In addition, poor phase connectivities will assuredly limit ion and electron transport, as well as the density of active sites for power-producing reactions. With new access to a wide range of technologies, micro- and nano-fabrication capabilities, and high-performance materials, there is a new ability to engineer the fuel cell electrode architecture, optimizing the physical processes within, increasing performance, and greatly reducing cost per kilowatt. Even simple packed-sphere and inverse-opal architectures will increase gas diffusion by an order of magnitude, and provide a higher level of connectivity than traditional powder-based structures.
机译:用于固体氧化物燃料电池的最佳电极将结合高孔隙率用于气体扩散,高相连通性以实现离子和电子传导以及高表面积以进行化学和电化学反应。示踪扩散模拟用于更好地了解多孔材料中微观结构与传输之间的相互作用。结果表明,通过多孔介质的扩散系数是内部几何形状(微观)和孔隙率(宏观)的细节的函数。我报告说,由高温烧结陶瓷粉末制成的当前固体氧化物燃料电池电极严重阻碍了气体传输,因为所得结构是高度曲折的,复杂的三维网络。另外,不良的相连接性必定会限制离子和电子的传输,以及用于发电反应的活性位点的密度。通过获得广泛的技术,微米和纳米制造功能以及高性能材料的新途径,可以设计燃料电池电极架构,优化内部物理过程,提高性能并大大降低成本,每千瓦。与传统的粉末状结构相比,即使是简单的球形填充结构和反蛋白石结构也将使气体扩散增加一个数量级,并提供更高水平的连通性。

著录项

  • 作者

    Hanna, Jeffrey.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号