首页> 外文学位 >Bio-related noble metal nanoparticle structure property relationships .
【24h】

Bio-related noble metal nanoparticle structure property relationships .

机译:生物相关的贵金属纳米颗粒结构性质关系。

获取原文
获取原文并翻译 | 示例

摘要

Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (350°C) annealing was also studied. It was found that coalescence and densification of the Au NP aggregates disrupted the interconnected network which subsequently created a loss of conductivity.; Investigation of bio-related Au/SiO2 core-shell NPs determined why published experimental results showed the sol-gel silica shell improved, by almost an order of magnitude, the detection efficiency of a DNA detection assay. Novel 360° rotation scanning TEM (STEM) imaging allowed study of individual NP surface morphology and internal structure. Electron energy loss spectroscopy (EELS) spectrum imaging determined optoelectronic properties and chemical composition of the silica shell used to encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ∼8.9eV, bulk plasmon-peak energy of ∼25.5eV and chemical composition of stoichiometric SiO2.; Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel nanostructures. Data from control experiments found the hexagons could be made without RNA and confirmed the presence of nanocrystalline Pd metal NPs in unpurified Pd2(DBA)3 reagent powder. Furthermore, the study determined the hexagon platelets to have a chemical composition of ∼90at% carbon and ∼10at% Pd and a lattice parameter corresponding to molecular crystals of Pd2(DBA)3 precursor, not Pd metal.*; *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Windows MediaPlayer or RealPlayer.
机译:贵金属纳米粒子(NPs)的结构特性关系可能与相同金属的整体特性大不相同。这项研究使用了最先进的分析电子显微镜和扫描探针显微镜来确定与生物相关的金和钯纳米颗粒的纳米级材料性能。最近,已经证明在官能化的二氧化硅表面上金纳米颗粒的自组装产生导电表面。通过原子力显微镜(AFM)和扫描电子显微镜(SEM)研究了负责电子传导的聚集体形态的确定。另外,还研究了低温(<350°C)退火后基板的电性能变化。发现金纳米颗粒聚集体的聚结和致密化破坏了相互连接的网络,随后造成了电导率的损失。对生物相关的Au / SiO2核壳NP的研究确定了为何已发表的实验结果表明,溶胶-凝胶二氧化硅壳可将DNA检测方法的检测效率提高近一个数量级。新颖的360°旋转扫描TEM(STEM)成像技术可以研究单个NP表面形态和内部结构。电子能量损失谱(EELS)光谱成像确定了用于封装金纳米颗粒的二氧化硅壳的光电特性和化学成分。结果表明,溶胶-凝胶沉积的SiO2的带隙能约为8.9eV,体等离子体激元峰能约为25.5eV,化学组成为SiO2。最后,尝试引起新型RNA介导的Pd六角形NP的结构性质关系。选择区域电子衍射(SAD),低压扫描透射电子显微镜(LV-STEM),电子能量损失谱(EELS)和能量分散谱(EDS)表征了该分子的原子序,化学组成和光电性能。纳米结构。对照实验的数据发现六边形可以在没有RNA的情况下制备,并证实了未纯化的Pd2(DBA)3试剂粉末中存在纳米晶的Pd金属NP。此外,研究还确定了六角形薄片的化学成分为〜90at%的碳和〜10at%的Pd,其晶格参数对应于Pd2(DBA)3前体而不是Pd金属的分子晶体。 *本论文是复合文件(作为论文的一部分,包含纸质副本和CD)。该CD需要满足以下系统要求:Windows MediaPlayer或RealPlayer。

著录项

  • 作者

    Leonard, Donovan Nicholas.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号