首页> 外文学位 >Coupled radial and translational responses of microbubbles subject to ultrasound driving within a biomedical framework.
【24h】

Coupled radial and translational responses of microbubbles subject to ultrasound driving within a biomedical framework.

机译:微气泡的径向和平移响应在生物医学框架内受到超声驱动。

获取原文
获取原文并翻译 | 示例

摘要

Microbubbles interacting with acoustic waves are at the foundation of both diagnostic and therapeutic medical techniques. The focus of this work is set on two particular classes of applications: pulsating microbubbles as contrast agents in medical imaging; and cavitating microbubbles in kidney stone comminution protocols.;Microbubble contrast agents injected in the bloodstream scatter the incoming acoustic waves originating from a transducer differently than the surrounding tissue and as such, can be used for medical imaging purposes. Because the magnitude of the acoustic radiation force can be significant, the hydrodynamic behavior of those bubbles may be modified during ultrasound measurements: as a consequence, the information extracted may be biased. Because displacement is intrinsically linked to linear momentum, the two equations describing the radial and translational motions are coupled. We first examine two translation approximating schemes, both based on the assumption of weak acoustic forcing. Solution of the equation of motion for linearly oscillating bubbles shows that even for weak acoustic forcing, the approximation of the translation velocity departs sometimes significantly from its fully-resolved counterpart. The error depends on the bubble size, the driving frequency, and the liquid properties. In a second part, an improved approximation is formulated, which allows one to understand better the dynamic fundamentals of bubble translation, including transient scaling and key driving forces. From the information provided by these approximations, we suggest new ways to predict some of the effects of the acoustic radiation force in applications such as targeted drug delivery, selective bubble driving and accumulation. Building upon these results, we then expand the scope of this dissertation in Chapter 5 to the related subject of microbubble management in microgravity. Similarly, it has been observed that small and stable bubbles can accumulate in microfluidic devices and may in some cases disrupt normal flowing conditions. To address these problems, we determine an optimal acoustic waveform aimed at maximizing bubble displacement over one period. To do so, we use radial variance as the basic cost function of an optimal control problem, along with other constraints. The efficacy of the optimally modified acoustic waveform is examined across the driving frequency spectrum and is found to be a significant improvement over regular sine waves of similar intensities and frequency.;Finally, we follow up on a previous investigation about the collateral damage caused by inertially expanding microbubbles during shockwave lithotripsy (SWL). The latter process is used extensively in urology to treat kidney stone. There, a series of strong lithotripter shockwaves (LSW) is focussed on the kidney region so as to fragment the stone. While there exists other key mechanisms in addition to those directly related to microbubbles, cavitating and later imploding gas bubbles in the vicinity of the stone were shown to participate in the stone comminution. These processes are likely to compromise the integrity of nearby tissue (e.g., capillary rupture). In this dissertation, we investigate two bubble-bubble mechanisms that may modify bubble behavior and in turn, affect the maximum size achievable by a bubble subject to a LSW. Namely, we analyze the effect of time delays on the cavitation growth of microbubbles and use a set of coalescing bubble equations which incorporate the presence of water vapor in the strongly expanding bubbles.
机译:与声波相互作用的微泡是诊断和治疗医学技术的基础。这项工作的重点放在两个特定的应用类别上:脉动微气泡作为医学成像中的造影剂;注入血流中的微泡造影剂会散射来自换能器的入射声波,其与周围组织不同,因此可用于医学成像目的。由于声辐射力的大小可能很大,因此可以在超声测量过程中修改这些气泡的水动力行为:结果,提取的信息可能会产生偏差。因为位移本质上与线性动量相关,所以描述径向运动和平移运动的两个方程是耦合的。我们首先研究两种平移近似方案,均基于弱声强迫的假设。对线性振荡气泡的运动方程的求解表明,即使对于弱声强迫,平移速度的近似值有时也会明显偏离其完全解析的对应值。误差取决于气泡大小,驱动频率和液体性质。在第二部分中,提出了一种改进的近似值,该近似值使人们可以更好地理解气泡转换的动态基本原理,包括瞬态缩放和关键驱动力。根据这些近似值提供的信息,我们提出了新的方法来预测声辐射力在诸如靶向药物输送,选择性气泡驱动和积累等应用中的某些作用。在这些结果的基础上,我们将第5章的研究范围扩大到微重力中微气泡管理的相关主题。类似地,已经观察到小而稳定的气泡会在微流体装置中积聚,并且在某些情况下可能会破坏正常的流动条件。为了解决这些问题,我们确定了一种旨在在一个周期内最大化气泡位移的最佳声波波形。为此,我们将径向方差与其他约束一起用作最优控制问题的基本成本函数。在整个驱动频谱上检查了最佳修改后的声波波形的功效,发现它比具有相同强度和频率的常规正弦波有显着改善。最后,我们跟进了先前关于惯性引起的附带损害的研究在冲击波碎石术(SWL)期间扩大微气泡。后者在泌尿科广泛用于治疗肾结石。在那里,一系列强烈的碎石冲击波(LSW)聚焦在肾脏区域,以使结石碎裂。除了与微气泡直接相关的机制外,还有其他关键机制,但在石头附近出现的空化和后来爆裂的气泡被证明参与了石头的粉碎。这些过程可能会损害附近组织的完整性(例如毛细血管破裂)。在本文中,我们研究了两种气泡起泡机制,它们可能会改变气泡行为,进而影响受到LSW影响的气泡可达到的最大尺寸。即,我们分析了时间延迟对微泡空化生长的影响,并使用了一组合并的气泡方程,该方程在强膨胀的气泡中结合了水蒸气的存在。

著录项

  • 作者

    Toilliez, Jean Odilon.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号