首页> 外文学位 >Surface finish and subsurface damage in polycrystalline optical materials.
【24h】

Surface finish and subsurface damage in polycrystalline optical materials.

机译:多晶光学材料的表面光洁度和次表面损伤。

获取原文
获取原文并翻译 | 示例

摘要

We measure and describe surface microstructure and subsurface damage (SSD) induced by microgrinding of hard metals and hard ceramics used in optical applications. We examine grinding of ceramic materials with bonded abrasives, and, specifically, deterministic microgrinding (DMG). DMG, at fixed nominal infeed rate and with bound diamond abrasive tools, is the preferred technique for optical fabrication of ceramic materials. In DMG material removal is by microcracking. DMG provides cost effective high manufacturing rates, while attaining higher strength and performance, i.e., low level of subsurface damage (SSD).; A wide range of heterogeneous materials of interest to the optics industry were studied in this work. These materials include: A binderless tungsten carbide, nonmagnetic Ni-based tungsten carbides, magnetic Co-based tungsten carbides, and, in addition, other hard optical ceramics, such as aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (Al2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). These materials are all commercially available.; We demonstrate that spots taken with magnetorheological finishing (MRF) platforms can be used for estimating SSD depth induced by the grinding process. Surface morphology was characterized using various microscopy techniques, such as: contact interferometer, noncontact white light interferometer, light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The evolution of surface roughness with the amount of material removed by the MRF process, as measured within the spot deepest point of penetration, can be divided into two stages. In the first stage the induced damaged layer and associated SSD from microgrinding are removed, reaching a low surface roughness value. In the second stage we observe interaction between the MRF process and the material's microstructure as MRF exposes the subsurface without introducing new damage. Line scans taken parallel to the MR fluid flow direction, show the microroughness contributions due to the interactions between MR fluid abrasive particles and the material's microstructure, whereas the MRF process signature is detected by measuring microroughness perpendicular to the MR fluid flow. We study the development of texture for these hard ceramics with the use of power spectral density (PSD).
机译:我们测量和描述由光学应用中使用的硬质金属和硬质陶瓷的微研磨引起的表面微观结构和亚表面损伤(SSD)。我们研究了用粘结磨料对陶瓷材料的研磨,尤其是确定性微研磨(DMG)。 DMG以固定的名义进给速度和结合的金刚石研磨工具,是光学制造陶瓷材料的首选技术。在DMG中,材料的去除是通过微裂纹进行的。 DMG提供了具有成本效益的高制造速率,同时获得了更高的强度和性能,即较低的次表面损伤(SSD)。这项工作研究了光学行业感兴趣的各种异质材料。这些材料包括:无粘结剂碳化钨,非磁性Ni基碳化钨,磁性Co基碳化钨,以及其他硬光学陶瓷,例如氧氮化铝(Al23O27N5 / ALON),多晶氧化铝(Al2O3 / PCA) ,以及化学气相沉积(CVD)的碳化硅(Si4C / SiC)。这些材料都是可商购的。我们证明用磁流变精加工(MRF)平台拍摄的斑点可用于估计由磨削过程引起的SSD深度。使用各种显微镜技术表征表面形态,例如:接触式干涉仪,非接触式白光干涉仪,光学显微镜,扫描电子显微镜(SEM)和原子力显微镜(AFM)。在最深的穿透点内测得的表面粗糙度随通过MRF工艺去除的材料量的变化可以分为两个阶段。在第一阶段中,去除了因微研磨而引起的损坏层和相关的SSD,从而达到了较低的表面粗糙度值。在第二阶段,我们观察到MRF过程与材料的微观结构之间的相互作用,因为MRF暴露了地下而没有引入新的破坏。平行于MR流体流动方向进行的线扫描显示,由于MR流体磨料颗粒和材料的微观结构之间的相互作用,从而产生了微粗糙度,而通过测量垂直于MR流体流动的微粗糙度来检测MRF工艺特征。我们使用功率谱密度(PSD)研究了这些硬质陶瓷质地的发展。

著录项

  • 作者

    Shafrir, Shai Negev.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:39:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号