首页> 外文学位 >Laser-induced stress wave technique for thin film adhesion and high strain rate materials research.
【24h】

Laser-induced stress wave technique for thin film adhesion and high strain rate materials research.

机译:激光诱导应力波技术用于薄膜粘附和高应变率材料的研究。

获取原文
获取原文并翻译 | 示例

摘要

Thin films are crucial components in a wide range of multilayer microelectronic and optical devices. Among the many properties, interfacial adhesion between the thin film and substrate is one of the key parameters influencing the overall reliability and durability of integrated thin film devices. However, due to the critical dimension of thin films, conventional techniques face challenges to reliably evaluate the thin film interfacial properties. To address this challenge, laser-induced stress wave techniques have been developed to quantitatively investigate the intrinsic strength of a planar thin film/substrate interface. Based on the previously developed tensile and mixed-mode loading technique, this dissertation further extended the laser-induced stress wave technique to pure shear loading of thin film interfaces. The technique was also applied to study the interfacial adhesion of various types of interfaces including the adhesion strength of ultra-thin nano-porous zeolite low-k films on silicon substrates, the adhesion between biological cells and inorganic substrates, and the dynamic interfacial properties of tungsten and tungsten heavy alloys. The application background of this study spans the wide field of semiconductor industry, biomedical devices and defense applications.; In addition to the further development and applications of laser-induced stress wave technique in various bi-material interfaces, this dissertation also investigated the theoretical bases for the formation and evolution of super sharp shock waves in fused silica which are important for measuring the adhesion of ultra-thin films. Due to its negative non-linear elasticity, fused silica has the special capability of developing decompression shock wave from an original Gaussian stress wave. Experimentally measured shock is typically around nanosecond wide, while one-dimensional wave analysis predicted a shock width of tens of picoseconds. The discrepancies may be due to the diffraction effect because of a finite source size as well as intrinsic wave absorption. Numerical simulation based on KZK equations was carried out by taking into account the interrelated effects of diffraction, nonlinearity and attenuation. The results confirmed the existence of a sharp shock of about 10 ps wide with nonlinearity effect only, about 20-30 ps wide with nonlinearity and attenuation effects in regardless of the existence of the diffraction effect.
机译:薄膜是广泛的多层微电子和光学器件中的关键组件。在许多特性中,薄膜与基材之间的界面粘合性是影响集成薄膜器件整体可靠性和耐用性的关键参数之一。然而,由于薄膜的临界尺寸,常规技术面临着可靠地评估薄膜界面性能的挑战。为了解决这一挑战,已经开发出激光诱导应力波技术来定量研究平面薄膜/基板界面的固有强度。在先前开发的拉伸和混合模式加载技术的基础上,本文进一步将激光诱导的应力波技术扩展到薄膜界面的纯剪切加载。该技术还被用于研究各种类型界面的界面粘附性,包括超薄纳米多孔沸石低k膜在硅基底上的粘附强度,生物细胞与无机基底之间的粘附性以及硅酮的动态界面性质。钨和钨重合金。这项研究的应用背景跨越了半导体工业,生物医学设备和国防应用的广泛领域。除了在各种双材料界面中激光诱导应力波技术的进一步发展和应用外,本文还研究了熔融石英中超尖锐冲击波的形成和演化的理论基础,这对于测量硅橡胶的粘附性具有重要意义。超薄膜。由于其负的非线性弹性,熔融石英具有从原始高斯应力波产生减压冲击波的特殊能力。实验测得的震荡通常约为纳秒宽,而一维波分析预测的震荡宽度为数十皮秒。差异可能是由于有限的光源尺寸以及固有波吸收引起的衍射效应。考虑到衍射,非线性和衰减的相关影响,进行了基于KZK方程的数值模拟。结果证实,仅存在具有非线性效应的约10 ps宽的尖锐冲击,不管存在衍射效应如何,具有非线性和衰减效应的约20-30 ps宽尖锐冲击波的存在。

著录项

  • 作者

    Hu, Lili.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号