首页> 外文学位 >Application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering to nitric oxide measurements in flames.
【24h】

Application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering to nitric oxide measurements in flames.

机译:电子共振相干反斯托克斯拉曼散射在火焰中一氧化氮测量中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Nitrogen oxides (NOx) are important air pollutants generated primarily from combustion of fossil fuels for energy and heat production. Nitric oxide accounts for the majority of total nitrogen oxides emissions because of the high temperatures involved in the combustion processes. Nitric oxide is also an important molecule in biology where it acts as a signaling molecule in the cardiovascular system. The governments of many countries are enforcing stricter regulations on NO emissions. In-situ measurements of NO are crucial for testing advanced combustor designs and pollution control strategies. Non-intrusive optical techniques such as LIF and CARS stand out as viable methods for NO measurements in combustion systems at high pressures. LIF has been applied successfully as a combustion diagnostic, along with a powerful variant, PLIF. Recently, quantitative LIF measurements have been performed at pressures up to &sim15 atm. CARS, on the other hand, provides accurate flame temperature measurements and also quantitative concentration measurements for major species.Combustion in modern gas turbines normally occurs at high pressure and temperature with a high luminescent background, thus posing special difficulties for measurements of temperature and concentrations. LIF suffers from line-broadening, attenuation of the excitation beam and signal owing to absorption, and interferences from other species (O2 for fuel-lean conditions, hydrocarbons or soot for fuel-rich conditions). These effects have been identified and investigated in depth. CARS, however, is a third order non-linear optical process. The CARS signal is proportional to the square of number density of the molecule under investigation. However, the detection limit for ns-CARS is restricted to 1%, even with a polarization-sensitive technique, owing to the small cross-sections for Raman scattering. By tuning one or more laser beams into resonance with appropriate electronic transitions, the CARS signal can be enhanced by orders of magnitude. This feature makes electronic-resonance-enhanced (ERE) CARS a promising technique for trace species measurements.The study conducted in this thesis focuses on ERE-CARS measurements of NO in atmospheric flames and under high pressure conditions. ERE-CARS measurements of acetylene(C2H2) are also discussed as another demonstration of this technique. Two different ERE-CARS systems for probing ro-vibrational Raman transitions are developed including their applications to flame measurements.The time-dependent density matrix equations for the nonlinear ERE-CARS of NO are derived and manipulated into a form suitable for direct-numerical-integration(DNI). Collisional effects including collisional dephasing of the coherence and collisional quenching of the A2Sigma+ electronic level are considered in the model. Two types of saturation are examined: (1) saturation of the two-photon Raman-resonant Q-branch transitions and (2) saturation of the one-photon electronic-resonant P-, or Q- or R-branch probe transition in the A2Sigma+ - X2pi electronic system. The interaction between the Raman transition and the electronic transition shows that they are coupled and that the saturation of either transition depends on the level of saturation of the other transition. The calculations show that the integrated ERE-CARS signal is insensitive to the rates of collisional electronic quenching and collisional dephasing. The insensitivity to collisional dephasing rates is more evident under saturation conditions. Future research efforts are proposed for further understanding and evaluation of the ERE-CARS technique.
机译:氮氧化物(NOx)是重要的空气污染物,主要由化石燃料燃烧产生的能量和热量产生。由于燃烧过程中涉及的高温,一氧化氮占氮氧化物排放总量的大部分。一氧化氮也是生物学中的重要分子,在心血管系统中它充当信号分子。许多国家的政府正在执行更严格的NO排放法规。 NO的现场测量对于测试先进的燃烧室设计和污染控制策略至关重要。诸如LIF和CARS的非侵入式光学技术是在高压下测量燃烧系统中NO的可行方法。 LIF与功能强大的PLIF一起已成功应用于燃烧诊断。最近,已经在高达&sim15 atm的压力下进行了定量LIF测量。另一方面,CARS可提供准确的火焰温度测量值以及主要物种的定量浓度测量值。现代燃气轮机中的燃烧通常发生在高压和高温且发光背景高的情况下,因此对温度和浓度的测量造成了特殊困难。 LIF受线展宽,由于吸收而引起的激发光束和信号衰减以及其他物质(贫燃料条件下为O2,富燃料条件下为碳氢化合物或烟灰)干扰的困扰。这些影响已被确定并深入研究。但是,CARS是三阶非线性光学过程。 CARS信号与所研究分子的数密度的平方成正比。但是,由于拉曼散射的横截面小,即使使用偏振敏感技术,ns-CARS的检测极限也被限制为1%。通过将一个或多个激光束调谐为具有适当电子跃迁的谐振,可以将CARS信号增强几个数量级。此功能使电子共振增强(ERE)CARS成为一种用于痕量物种测量的有前途的技术。本论文的研究重点是在大气火焰和高压条件下对ERE-CARS进行NO的测量。还讨论了乙炔(C2H2)的ERE-CARS测量,作为该技术的另一个证明。开发了两种不同的ERE-CARS系统来探测振动的拉曼跃迁,包括它们在火焰测量中的应用.NO的非线性ERE-CARS的随时间变化的密度矩阵方程式被导出并处理为适合于直接数值计算的形式。集成(DNI)。在模型中考虑了碰撞效应,包括相干的碰撞移相和A2Sigma +电子能级的碰撞猝灭。检查了两种类型的饱和度:(1)在饱和状态下双光子拉曼共振Q分支跃迁的饱和和(2)单光子电子共振P或Q或R分支探针跃迁的饱和。 A2Sigma +-X2pi电子系统。拉曼跃迁和电子跃迁之间的相互作用表明它们是耦合的,并且任一跃迁的饱和度取决于另一个跃迁的饱和度。计算表明,集成的ERE-CARS信号对碰撞电子猝灭和相移相的速率不敏感。在饱和条件下,对碰撞移相速率的不敏感性更加明显。提出了进一步的研究工作,以进一步了解和评估ERE-CARS技术。

著录项

  • 作者

    Chai, Ning.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Chemical.Engineering Mechanical.Physics Optics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号