首页> 外文学位 >Recalage non rigide et segmentation automatique d'images de perfusion du foie.
【24h】

Recalage non rigide et segmentation automatique d'images de perfusion du foie.

机译:非刚性注册和肝脏灌注图像的自动分割。

获取原文
获取原文并翻译 | 示例

摘要

This thesis aims at developping new registration and segmentation methods for liver perfusion images. These methods are developed in a unified and efficient framework based on large deformation registration. The new registration method incorporates an incompressibility constraint and captures non-rigid deformations of large amplitude. The incompressibility constraint preserves the volume of intensity-enhanced structures due to the contrast agent injection. Modeling the liver as an incompressible organ (Yin et al., 2004) helps the motion correction step, where we verify that the volume of contrast-enhanced structures does not change after the registration process. The new segmentation method is based on large deformation registration. A binary template, that represents a model of the liver, is aligned to an image. A new region-based similarity measure is derived. This allows for a global regularization on the liver shape and the preservation of its topology. It is more robust to extract the liver boundary and it is possible to segment irregular shapes without leaks of the contour in other organs. The constrained registration and the automatic segmentation methods are implemented to be compatible with the physician's time constraints. They use low-complexity algorithms to accelerate data processing and maximize the use of computer resources.;To quantify the accuracy of the segmentation method, we use five standard metrics. We compare the results of our segmentation to manual reference segmentations. We evaluated 30 computed tomography images (images composed up to 512 × 512 × 500 voxels), provided by the workshop "3D Segmentation in the Clinic: A Grand Challenge". Through this workshop, we are able to compare the results of our segmentation with the results of segmentation methods developed by other recent methods. The results of our segmentations fall into third position in relation to methods of the state of the art (van Ginneken et al., 2007). Unlike contour-based segmentation techniques, this framework uses a global regularization of the template, and allows us to segment irregular shapes while avoiding leaks. Comparing with shape based methods, we have segmentations that are more accurate. We also propose a, new multi-label segmentation, that maximizes the likelihood of intensity distributions of different regions to segment. Preliminary results are very satisfactory.;This thesis develops new techniques for motion correction and boundary extraction of liver perfusion images. The registration with the incompressibility constraint and the automatic segmentation are robust and help doctors to make a better diagnosis and to improve the therapeutic planning of liver cancers. These new methods are efficient and allow us to use the registration and segmentation methods in a clinical environment where the time frame is compatible with physicians needs. (Abstract shortened by UMI.).;Properties of the registration with the incompressibility constraint are studied using synthetic data and four liver perfusion studies. These studies represent large amounts of data (images composed up to 512 × 512 × 220 voxels). A visual inspection of substracted aligned images and an inspection of the recovered transformation are used for validation. We also compute the size of pathological regions before and after the constrained registration to quantify relative volume differences in absolute value. The registration results prove that our approach is robust and improves the capture range of large deformations. Relative volume differences in absolute value of tumors before and after the contrained registration do not exceed 2.4%. This method prevents the shrinkage or expansion of contrast-enhanced regions, a phenomenon typically observed with standard fluid methods. Unlike existing methods (Haber et Modersitzki, 2005), this work dissociates the incompressibility constraint from the regularization, allowing us to deal with the large-scale problems in a reasonable time. This makes our approach pratical for perfusion studies in the clinical environment.
机译:本文旨在为肝脏灌注图像开发新的配准和分割方法。这些方法是在基于大形变配准的统一高效框架中开发的。新的配准方法结合了不可压缩约束,并捕获了大振幅的非刚性变形。由于注入造影剂,不可压缩性约束保留了强度增强结构的体积。将肝脏建模为不可压缩的器官(Yin等人,2004)有助于进行运动校正步骤,在该步骤中,我们验证了对比度增强结构的体积在配准过程后不会改变。新的分割方法基于大变形配准。表示肝脏模型的二进制模板与图像对齐。得出了一种新的基于区域的相似性度量。这允许对肝脏形状进行整体正则化并保留其拓扑结构。提取肝脏边界更为稳健,并且可以分割不规则形状,而不会在其他器官中泄漏轮廓。实施受约束的配准和自动分割方法以与医师的时间限制兼容。他们使用低复杂度算法来加速数据处理并最大程度地利用计算机资源。为了量化分割方法的准确性,我们使用了五个标准指标。我们将分割结果与手动参考分割进行比较。我们评估了30场计算机断层扫描图像(图像组成高达512×512×500体素),该图像由研讨会“诊所中的3D分割:巨大挑战”提供。通过这次研讨会,我们可以将分割结果与其他最新方法开发的分割方法的结果进行比较。与现有技术相比,我们的分割结果落在了第三位(van Ginneken等,2007)。与基于轮廓的分割技术不同,此框架使用模板的全局正则化,并允许我们对不规则形状进行分割,同时避免泄漏。与基于形状的方法相比,我们的分割更加准确。我们还提出了一种新的多标签分割方法,该方法可以最大程度地分割不同区域的强度分布。初步的结果是令人满意的。本论文开发了用于肝脏灌注图像运动校正和边界提取的新技术。具有不可压缩性约束和自动分割的配准功能强大,可帮助医生做出更好的诊断并改善肝癌的治疗计划。这些新方法是有效的,并允许我们在时间表与医生需求相适应的临床环境中使用配准和细分方法。 (摘要由UMI缩短。);使用合成数据和四次肝脏灌注研究研究了具有不可压缩性约束的配准性质。这些研究代表了大量数据(图像组成高达512×512×220体素)。减去对齐图像的视觉检查和恢复的转换的检查用于验证。我们还计算了约束配准前后的病理区域的大小,以量化绝对值的相对体积差异。配准结果证明,我们的方法是鲁棒的,并扩大了大变形的捕获范围。禁忌证前后肿瘤绝对值的相对体积差异不超过2.4%。这种方法可以防止对比度增强区域的收缩或膨胀,这种现象通常是使用标准流体方法观察到的。与现有方法不同(Haber等人,Modersitzki,2005年),这项工作将不可压缩性约束与正则化分离开来,使我们能够在合理的时间内处理大规模问题。这使得我们的方法对于临床环境中的灌注研究而言是实用的。

著录项

  • 作者

    Saddi, Kinda Anna.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号