首页> 外文学位 >Segmentation automatique de la lumiere des arteres sur une sequence d'images Intra Vasculaires a l'Ultrason (IVUS).
【24h】

Segmentation automatique de la lumiere des arteres sur une sequence d'images Intra Vasculaires a l'Ultrason (IVUS).

机译:在一系列血管内超声图像(IVUS)上自动分割动脉光。

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular disease (CVD) is the leading cause of death in North America today. It is manifested in different forms such angina pectoris, heart attack, or atherosclerosis. Atherosclerosis is caused by the build-up of fatty substances and calcium deposits inside the walls of the coronary arteries. Eventually, the accumulation grows large enough to harden the plaque and almost completely block the blood flow within the artery. This is also known as artery stenosis. Therefore, it is imperative that techniques be developed to help the interventionist properly characterize and diagnose this form of CVD.;In IVUS images, the lumen is typically adjacent to the imaging catheter, and the coronary artery vessel wall mainly appears as three layers: intima, media, and adventitia. In clinical research, the two inner layers are of principal concern. The identification of the border between the lumen and intima, as well as, the identification of the border separating the media and adventitia are of vital interest to clinicians for the proper diagnosis of artery stenosis pre-operatively and for proper follow-up post-operatively. Several segmentation techniques have been developed for these purposes. Generally, these methods are not fully automatic and they segment IVUS images in the spatial domain, rather than analyzing complete sequences of images in the spatio-temporal domain.;The objective of this work is to propose an automatic algorithm that targets the successful extraction of the lumen border with respect to the coronary wall using all IVUS images in a given dataset. We suppose that the image dataset was acquired by a transducer having a range above 30 MHz. This minimum frequency reveals the apparent border separations, as well as the texture of the inner walls of the artery. The proposed algorithm performs texture analysis followed by a classification.;First, a pre-processing of the IVUS images is performed in order to transform the images into polar coordinates. During this step, the calibration markers visible on the images are removed. Also, images are selected by ECG-gating, that is, images falling on the same cardiac phase are extracted for analysis. Finally, the catheter visible in the polar images is removed as well.;One of the most commonly used medical devices for the identification of coronary artery stenosis is Intravascular Ultrasound (IVUS). A small transducer on the tip of a coronary catheter is moved, with the help of a guidewire, inside the coronary arteries (using high frequency sound waves) in order to visualize the interior walls of the artery. The sound waves that are emitted from the catheter tip are usually in the 20-40 MHz range. The catheter also receives and conducts the return echo information which constructs and displays a real time 2D ultrasound image of a thin section of the blood vessel currently surrounding the catheter tip. The guidewire is kept stationary and the ultrasound catheter tip is slid backwards, usually under motorized control at a pullback speed of 0.5 mm/s. This is useful as we can visualize the artery from the inside out, thus making it possible to quantify the severity of stenosis present. It is a means of showing the physician where the normal artery wall ends and the plaque begins.;Secondly, texture analysis is performed in order to create a characteristic space for each pixel of the image. Three dimensional co-occurrence matrices are used to perform the analysis. The matrices are calculated using cubes. These cubes are created using the current image coupled with a few images preceding and following it. Then, the characteristic space is created using a convolution on each pixel. The convolution consists of calculating the co-occurrence matrix for the cube, along several angular directions. Eight statistical characteristics are evaluated for each matrix. If many angular directions are considered for the analysis, the complexity of a given characteristic space increases and therefore a principle component analysis is performed on the data to reduce the space.;Third, a hybrid k-means classifier is used to separate the characteristic space into two distinct classes: (i) the lumen and (ii) the intima, media and adventitia region. The advantage of this classifier is that it is an unsupervised learning algorithm compared to the others such as the support vector machine algorithm for example.;Lastly, a post treatment is applied on the final results from the classification. A region growing algorithm is used to identify the border between the lumen and the other tissue regions. The image representing the classification is decomposed into binary values, where a value of one is assigned to pixels making up the lumen. Several morphological filters are applied to smooth the final image. The resulting lumen boundary is superimposed on the original IVUS images by using active contours in order to minimize interpolation errors when reconverting the image back to cartesian coordinates from the polar coordinates.;Validation is performed on two clinical IVUS datasets. In total, 270 images were analyzed and the area correlation between manual and automatic segmentation is 0.90. When removing images containing severe artifacts (i.e. catheter echo is present in the image or the lumen is not visible) the area correlations increase to 0.97, whereas the mean Euclidean distance between manual and automatic identified borders was 0.08 mm with a standard deviation 0.095 mm. The final results are comparable to published data. The proposed method automatically segments the lumen border by analyzing the different textures present in the image and by using a hybrid k-means classifier. Future work will rely on the classification of the morphology of the plaque present inside the coronary artery.
机译:当今,心血管疾病(CVD)是导致死亡的主要原因。它以不同形式表现,例如心绞痛,心脏病发作或动脉粥样硬化。动脉粥样硬化是由冠状动脉壁内脂肪物质和钙沉积物的堆积引起的。最终,积聚物增大到足以使斑块硬化并几乎完全阻塞动脉内的血流的程度。这也称为动脉狭窄。因此,必须开发出技术来帮助介入医师正确地表征和诊断这种形式的CVD。在IVUS图像中,管腔通常与成像导管相邻,并且冠状动脉血管壁主要表现为三层:内膜,媒体和外膜。在临床研究中,两个内层是主要关注的问题。内腔和内膜之间的边界的识别以及中膜和外膜之间的边界的识别对于临床医生在术前正确诊断动脉狭窄和术后进行适当随访非常重要。 。为了这些目的,已经开发了几种分割技术。通常,这些方法不是完全自动的,它们在空间域中分割IVUS图像,而不是在时空域中分析图像的完整序列。这项工作的目的是提出一种针对成功提取图像的自动算法。使用给定数据集中的所有IVUS图像相对于冠状动脉壁的管腔边界。我们假设图像数据集是由具有30 MHz以上范围的换能器获取的。该最小频率揭示了明显的边界间隔以及动脉内壁的纹理。该算法首先进行纹理分析,然后进行分类。首先,对IVUS图像进行预处理,以将图像转换为极坐标。在此步骤中,将删除图像上可见的校准标记。另外,通过ECG门控选择图像,即,提取落在相同心脏相位上的图像以进行分析。最后,在极坐标图像中可见的导管也被移除。用于识别冠状动脉狭窄的最常用医疗设备之一是血管内超声(IVUS)。借助于导线,在冠状动脉导管尖端上的一个小型换能器在冠状动脉内部移动(使用高频声波),以便可视化动脉的内壁。从导管尖端发出的声波通常在20-40 MHz范围内。导管还接收并执行返回回波信息,该回波信息构造并显示当前围绕导管尖端的血管薄层的实时2D超声图像。导丝保持静止,超声导管尖端通常在机动控制下以0.5 mm / s的回拉速度向后滑动。这非常有用,因为我们可以从内到外可视化动脉,从而可以量化狭窄的严重程度。这是向医生显示正常动脉壁结束处和斑块开始的位置的一种方法。其次,执行纹理分析以便为图像的每个像素创建特征空间。三维共现矩阵用于执行分析。矩阵是使用多维数据集计算的。这些多维数据集是使用当前图像以及之前和之后的一些图像创建的。然后,使用每个像素上的卷积来创建特征空间。卷积包括沿多个角度方向计算立方体的共现矩阵。每个矩阵评估八个统计特征。如果考虑多个角度方向进行分析,则给定特征空间的复杂性会增加,因此需要对数据进行主成分分析以减少空间。第三,使用混合k均值分类器来分离特征空间分为两个不同的类别:(i)管腔和(ii)内膜,中层和外膜区域。该分类器的优点是,与其他支持算法(例如支持向量机算法)相比,它是一种无监督的学习算法。最后,对分类的最终结果进行后处理。使用区域增长算法来识别管腔和其他组织区域之间的边界。代表分类的图像被分解成二进制值,其中将值1分配给组成流明的像素。应用了几种形态学滤镜以平滑最终图像。通过使用活动轮廓将生成的管腔边界叠加在原始IVUS图像上,以在将图像从极坐标重新转换回笛卡尔坐标时将插值误差减至最小。在两个临床IVUS数据集上进行验证。总共分析了270张图像,手动和自动分割之间的区域相关性为0.90。当删除包含严重伪影的图像(即图像中存在导管回声或不可见内腔)时,面积相关性增加到0.97,而手动和自动识别的边界之间的平均欧几里得距离为0.08 mm,标准差为0.095 mm。最终结果与发布的数据相当。所提出的方法通过分析图像中存在的不同纹理并使用混合k均值分类器来自动分割管腔边界。未来的工作将取决于冠状动脉内部斑块形态的分类。

著录项

  • 作者

    Alexandrescu, Ionut.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Biomedical.
  • 学位 M.Sc.A.
  • 年度 2008
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号