首页> 外文学位 >Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.
【24h】

Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.

机译:寡核苷酸鸟苷共轭到氮化镓纳米结构的光子学。

获取原文
获取原文并翻译 | 示例

摘要

In this work, I studied the hybrid system based on self-assembled guanosine crystal (SAGC) conjugated to wide-bandgap semiconductor gallium nitride (GaN). Guanosine is one of the four bases of DNA and has the lowest oxidation energy, which favors carrier transport. It also has large dipole moment. Guanosine molecules self-assemble to ribbon-like structure in confined space. GaN surface can have positive or negative polarity depending on whether the surface is Ga- or N-terminated. I studied SAGC in confined space between two electrodes. The current-voltage characteristics can be explained very well with the theory of metal-semiconductor-metal (MSM) structure. I-V curves also show strong rectification effect, which can be explained by the intrinsic polarization along the axis of ribbon-like structure of SAGC. GaN substrate property influences the properties of SAGC. So SAGC has semiconductor properties within the confined space up to 458nm. When the gap distance gets up to 484nm, the structure with guanosine shows resistance characteristics. The photocurrent measurements show that the bandgap of SAGC is about 3.3-3.4eV and affected by substrate properties. The MSM structure based on SAGC can be used as photodetector in UV region.;Then I show that the periodic structure based on GaN and SAGC can have photonic bandgaps. The bandgap size and the band edges can be tuned by tuning lattice parameters. Light propagation and emission can be tuned by photonic crystals. So the hybrid photonic crystal can be potentially used to detect guanosine molecules. If guanosine molecules are used as functional linker to other biomolecules which usually absorb or emit light in blue to UV region, the hybrid photonic crystal can also be used to tune the coupling of light source to guanosine molecules, then to other biomolecules.
机译:在这项工作中,我研究了基于自组装鸟苷晶体(SAGC)与宽带隙半导体氮化镓(GaN)共轭的混合系统。鸟苷是DNA的四个碱基之一,氧化能最低,有利于载体运输。它也有很大的偶极矩。鸟嘌呤分子在狭窄的空间中自组装成带状结构。 GaN表面可以具有正极性或负极性,具体取决于该表面是Ga端还是N端。我在两个电极之间的有限空间内研究了SAGC。可以通过金属-半导体-金属(MSM)结构理论很好地解释电流-电压特性。 I-V曲线也显示出强的整流作用,这可以通过沿着SAGC的带状结构的轴的固有极化来解释。 GaN衬底的性能会影响SAGC的性能。因此SAGC在458nm的受限空间内具有半导体特性。当间隙距离达到484nm时,具有鸟苷的结构显示出电阻特性。光电流测量结果显示,SAGC的带隙约为3.3-3.4eV,并受衬底性能的影响。基于SAGC的MSM结构可用作紫外区域的光电探测器。然后,我证明了基于GaN和SAGC的周期性结构可以具有光子带隙。带隙尺寸和带边缘可以通过调整晶格参数来调整。光的传播和发射可以通过光子晶体来调节。因此,杂化光子晶体可以潜在地用于检测鸟苷分子。如果将鸟嘌呤分子用作通常吸收或发射蓝光至紫外光的其他生物分子的功能连接子,则杂化光子晶体也可用于调节光源与鸟苷分子的耦合,然后与其他生物分子耦合。

著录项

  • 作者

    Li, Jianyou.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号