首页> 外文学位 >A multifunctional NMR and fluorescence-based chemical probe for dehydrogenases: Application to an anti-infective drug target.
【24h】

A multifunctional NMR and fluorescence-based chemical probe for dehydrogenases: Application to an anti-infective drug target.

机译:用于脱氢酶的多功能NMR和基于荧光的化学探针:在抗感染药物靶标中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Dihydrodipicolinate Reductase (DHPR) is a potential anti-infective drug target. Chapter 1 described how to express, purify and characterize this protein target in an unlabeled and a triple labeled form, for later studies. A privileged scaffold catechol rhodanine acetic acid (CRAA) is a starting point to design dehydrogenase inhibitors. This privileged scaffold has also been used to develop proteomic probes based on its fluorescent/visible properties. It was developed to use in in-gel competition assays for dehydrogenases in Chapter 2. In Chapter 3, this CRAA scaffold was linked to an agarose matrix to build an affinity column to 'fish' out possible dehydrogenases from the Mycobacterium Tuberculosis proteome, to identify potential drug targets, and human liver proteomes, to identify potential anti-targets, which should be avoided in the design of anti-infective drug leads. The mechanism by which DHPR binds to its cofactor and substrate was studied in Chapter 4; this mechanism facilitated an understanding of ligand cooperativity for DHPR, and the design of high affinity biligand inhibitors. The 15N-carboxamide labeled NAD(H) was developed and applied as a mechanistic probe for dehydrogenases in Chapter 5, these probes can help us to better understand the catalytic mechanism and the cofactor carboxamide geometry, when they bind to dehydrogenases. In Chapter 6, fragment assembly drug design methods are applied using NMR and thiol tethering approaches, developed based on the DHPR-CRAA-PDC complex that was characterized in chapter 4. Labeled DHPR and cofactor were prepared to permit a better understanding of protein-ligand interaction mechanisms, and to validate the high throughput screening. Successful results from this study will facilitate future rational drug design using fragment assembly.
机译:二氢吡啶二甲酸酯还原酶(DHPR)是潜在的抗感染药物靶标。第1章介绍了如何以未标记和三重标记的形式表达,纯化和表征该蛋白质靶标,以供以后研究。特有的支架邻苯二酚罗丹宁乙酸(CRAA)是设计脱氢酶抑制剂的起点。基于其荧光/可见特性,这种特权支架也已用于开发蛋白质组探针。它被开发用于第2章中用于脱氢酶的凝胶内竞争测定。在第3章中,将此CRAA支架与琼脂糖基质相连,构建了亲和柱,以从结核分枝杆菌蛋白质组中“提取”出可能的脱氢酶,以鉴定潜在的药物靶标和人类肝脏蛋白质组,以识别潜在的抗靶标,在设计抗感染药物引线时应避免使用。第四章研究了DHPR与其辅因子和底物结合的机理。这种机制促进了对DHPR的配体协同性的理解,以及高亲和力双配体抑制剂的设计。 15N-羧酰胺标记的NAD(H)是在第5章中开发并用作脱氢酶的机械探针,当它们与脱氢酶结合时,这些探针可以帮助我们更好地理解催化机理和辅因子羧酰胺的几何形状。在第6章中,使用了基于NMR和硫醇束缚方法的片段组装药物设计方法,该方法是基于第4章中描述的DHPR-CRAA-PDC复合物开发的。制备了标记的DHPR和辅因子以更好地理解蛋白质-配体相互作用机制,并验证高通量筛选。这项研究的成功结果将有助于将来使用片段组装进行合理的药物设计。

著录项

  • 作者

    Ge, Xia.;

  • 作者单位

    Marquette University.;

  • 授予单位 Marquette University.;
  • 学科 Chemistry Biochemistry.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号