首页> 外文学位 >Ultrafast electronic deactivation of DNA bases in aqueous solution .
【24h】

Ultrafast electronic deactivation of DNA bases in aqueous solution .

机译:超快电子灭活水溶液中的DNA碱基。

获取原文
获取原文并翻译 | 示例

摘要

One of the primary mechanisms of DNA damage occurs following irradiation with high energy ultraviolet (UV) light. Consequently, the study of excited state dynamics of nucleic acid bases upon UV excitation is essential towards understanding and mediating DNA photodamage. Due to the extremely short sub-picosecond (10-12 s) lifetimes, most time-resolved studies on DNA bases are hampered by the ability to generate and manipulate short UV laser pulses. The development of an ultrashort UV-pulse (∼30 fs) source reported here now makes it possible to characterize very rapid dynamics that is simply not observable in previous lower time resolution experiments. Results of experiments combining broadband UV/Visible dispersed probing with simultaneous polarization resolution are presented for isolated free adenine and uracil derivatives in aqueous solution at room temperature. Both spectral and dynamical data is acquired providing the most detailed view of the excited-state dynamics to date.; For thymidine, the spectra of all transient species have been identified and compare surprisingly well with corresponding time-resolved photoelectron spectra from the same intermediate states in the gas-phase. The proposed model for electronic deactivation is, thus, analogous to gas-phase dynamics where there is an intermediate state between the optically bright pipi* and the final ground state during electronic relaxation. Additional experimental studies for uridine show ultrafast branching in the initial pipi* state: a fraction of the excited-state population decays via internal conversion to the ground state, the rest of the population decays to the npi* state.; For adenosine, ultrafast electronic relaxation from the excited pipi* states to the ground state is likely to take place via a pipi*/S 0 conical intersection. However, gas-phase time-resolved photoelectron spectroscopy predict the same npi* state intermediate relaxation model. Therefore, the deactivation mechanism is different for the gas and solution phase dynamics. This provides direct evidence of the solvent effect on the excited-state potential energy surfaces, especially in the region of conical intersections.
机译:DNA损伤的主要机制之一是在高能紫外线(UV)照射后发生的。因此,基于紫外线激发的核酸激发态动力学研究对于理解和介导DNA光损伤是必不可少的。由于亚皮秒(10-12 s)的极短寿命,大多数有关DNA碱基的时间分辨研究都因产生和操纵短波紫外线脉冲的能力而受阻。现在,这里报道的超短紫外线脉冲(〜30 fs)光源的开发使表征非常快速的动力学成为可能,而这在以前的较低时间分辨率的实验中根本无法观察到。提出了在室温下将宽带紫外/可见光分散探测与同时的偏振分辨率相结合的实验结果,用于分离水溶液中的游离腺嘌呤和尿嘧啶衍生物。光谱和动力学数据都被采集,从而提供了迄今为止激发态动力学的最详细视图。对于胸苷,已经鉴定了所有瞬态物质的光谱,并将其与来自气相中相同中间态的相应时间分辨光电子光谱进行了令人惊讶的良好比较。因此,所提出的电子失活模型类似于气相动力学,其中在电子弛豫过程中,光学亮pipi *和最终基态之间存在中间状态。尿苷的其他实验研究表明,在初始pipi *状态下超快分支:一部分激发态种群通过内部转化为基态而衰变,其余种群则衰变为npi *状态。对于腺苷,很可能会通过pipi * / S 0圆锥形相交从激发的pipi *状态到基态发生超快电子弛豫。但是,气相时间分辨光电子能谱预测了相同的npi *态中间弛豫模型。因此,对于气相和溶液相动力学,失活机理是不同的。这提供了溶剂对激发态势能表面的影响的直接证据,尤其是在圆锥形交叉区域。

著录项

  • 作者

    Jailaubekov, Askat.;

  • 作者单位

    University of Southern California.$bChemistry.;

  • 授予单位 University of Southern California.$bChemistry.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号