首页> 外文学位 >The effect of high hydrostatic pressure on histidine decarboxylase and histamine forming bacteria.
【24h】

The effect of high hydrostatic pressure on histidine decarboxylase and histamine forming bacteria.

机译:高静水压力对组氨酸脱羧酶和组胺形成细菌的影响。

获取原文
获取原文并翻译 | 示例

摘要

Increasing consumer demand for fresh fishery products with minimized loss of their nutritional properties is forcing food industry to look for alternative technologies to maintain the fresh attributes, stability and safety of foods. Demand for fresh tuna fish is no exception, being a valuable source of nutrients with immense health benefits. However, this product is highly perishable and has been commonly implicated in scombroid (histamine) poisoning caused by microbial decarboxylation of histidine contained in high levels in the tissues of scombroid fishes. Current techniques are inadequate for the prevention of histamine formation in fresh fishery products and high pressure processing is a potential alternative for it can inactivate microorganisms and enzymes, without affecting (or only minimally altering) the quality characteristics of foodstuffs. Previous studies have shown a decrease in histamine formation after a high pressure treatment and this study focuses on the effect of high pressure on the histidine decarboxylase enzyme and selected histamine forming microorganisms involved in histamine formation.; Commercial histidine decarboxylase suspended in different media (buffer solution and fish slurry with and without added histidine) was submitted to different high pressure treatments (200--400 MPa) with distinct time durations (0--60 min) at room temperature (20°C--25°C). Enzymatic activity of pressure treated and control samples were then compared by measuring histamine formation. Results were similar in all media; a 200 MPa treatment increased the enzymatic activity a little more than 20% as time increased; a 300 MPa treatment increased activity over 20% at first, followed by a decrease in activity as time increased only to reach a level of residual activity similar or only slightly lower than control samples; and a 400 MPa treatment reduced enzyme activity as time increased to a level of 55% residual activity in a buffer solution where the greatest inactivation was observed.; Enzyme activation and inactivation were affected by a dual effect attributed to a pulse effect, which caused a shift in activity and was independent of the length of the treatment, and a pressure-hold effect, during which activation or inactivation followed first order kinetics. The enzyme appeared highly resistant to pressure in all media as observed from D-values (>2700 min) and pressure sensitivity of destruction rate (zp) values (>500 MPa).; Inactivation of non-pathogen histamine forming bacteria (HFB) Escherichia coli K12 and Bacillus megaterium was evaluated by inoculating cultures in a fish tissue homogenate. Surviving colonies were enumerated after the treatments observing inactivation described by the same dual effect described earlier. Pressures above 300 MPa achieved a significant destruction of E. coli K12 (> 4 log-cycles) while B. megaterium appeared highly resistant for only a 2 log-cycle reduction was observed after at the highest pressure treatment conditions (400 MPa, 20 min).; D-values for both microorganisms decreased as pressure increased being significantly smaller for E. coli K 12, which also appeared to be more sensitive to pressure changes as observed from the zp values (zp = 151.51 MPa and zp = 909.10 MPa for E. coli and B. megaterium respectively. Inactivation caused by the pulse effect appeared very effective for both microorganisms as pressure increased, particularly at 400 MPa (PE > 1.25).
机译:消费者对新鲜渔业产品的需求不断增加,同时营养成分的损失最小,这迫使食品工业寻求替代技术来保持食品的新鲜特性,稳定性和安全性。对新鲜金枪鱼的需求也不例外,它是营养的宝贵来源,对健康具有极大的好处。但是,该产品极易腐烂,并且通常与在com鱼组织中高水平的组氨酸的微生物脱羧作用引起的com鱼(组胺)中毒有关。当前的技术不足以防止在新鲜渔业产品中形成组胺,而高压处理是一种潜在的替代方法,因为它可以灭活微生物和酶,而又不影响(或仅最小程度地改变)食品的质量特征。先前的研究表明高压处理后组胺的形成减少,并且该研究集中于高压对组氨酸脱羧酶和参与组胺形成的某些组胺形成微生物的影响。悬浮在不同介质(缓冲液和鱼肉中添加和不添加组氨酸)中的商业组氨酸脱羧酶在室温(20°C)下经受不同的持续时间(0--60分钟)的不同高压处理(200--400 MPa) C--25℃)。然后通过测量组胺形成来比较经压力处理的样品和对照样品的酶活性。所有媒体的结果都相似。 200 MPa的处理随着时间的增加使酶的活性增加了20%以上。 300 MPa处理首先将活性提高了20%以上,然后随着时间的延长活性降低,仅达到与对照样品相似或仅略低于对照样品的残余活性水平;随着时间的延长,缓冲液中的酶活性随时间增加到残留活性的55%,而400 MPa处理使酶活性降低,其中观察到的失活最大。酶的激活和失活受到脉冲效应的双重作用的影响,脉冲效应引起活性的改变并与处理时间无关,而压力保持效应则在激活或失活之后跟随一级动力学。从D值(> 2700分钟)和破坏速率(zp)值的压力敏感性(> 500 MPa)观察到,该酶对所有介质均表现出高度耐压性。通过在鱼组织匀浆中接种培养物来评估非病原体组胺形成细菌(HFB)的失活大肠杆菌K12和巨大芽孢杆菌。在观察到通过与前述相同的双重作用描述的灭活的治疗后,计数存活的菌落。在最高压力处理条件下(400 MPa,20分钟),观察到高于300 MPa的压力可对E. coli K12(> 4个对数周期)造成明显破坏,而巨大芽孢杆菌似乎具有很高的抵抗力,仅观察到2个对数周期降低)。两种微生物的D值均随压力的增加而降低,而大肠杆菌K 12则显着减小,这从zp值(对于大肠杆菌而言,zp = 151.51 MPa和zp = 909.10 MPa)看来对压力变化更为敏感。当压力升高时,尤其是在400 MPa(PE> 1.25)时,脉冲效应引起的灭活对两种微生物都非常有效。

著录项

  • 作者

    Santibanez, Rodrigo.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Agriculture Food Science and Technology.
  • 学位 M.Sc.
  • 年度 2007
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农产品收获、加工及贮藏;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号