首页> 外文学位 >Effects of Polymer Structure and Relaxations on Ionic Conductivity in Anion Exchange Membranes with Quaternary Ammonium Functional Groups
【24h】

Effects of Polymer Structure and Relaxations on Ionic Conductivity in Anion Exchange Membranes with Quaternary Ammonium Functional Groups

机译:季铵官能团阴离子交换膜中聚合物结构和弛豫对离子电导率的影响

获取原文
获取原文并翻译 | 示例

摘要

Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications.;This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm --1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies.;The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g --1. Water uptake, in-plane ionic conductivity and membrane morphology were measured across a series of membranes with the original bromide (Br --) counter-ion. These bulk materials characterization experiments demonstrated that this polymer structure produces well-ordered lamellar morphology with moderate water uptake and competitive ionic conductivity (ca. 40 mS cm--1 at 90 °C and 95% relative humidity). These characteristics make it an appropriate candidate for the following more fundamental investigations of ionic conductivity mechanisms.;Broadband electrical spectroscopy (BES) was conducted on one [PVBTMA][Br]- b-PMB sample in the Br-- form and analyzed in conjunction with thermal stability and relaxation experiments in Chapter 4. We were able to propose two separate ionic conductivity mechanisms and relate each to physical attributes of the polymer structure. A significant thermal transition was observed at Tdelta , which resulted in a dramatic drop in conductivity. In a continued effort to characterize the ionic conductivity of these block-copolymer membranes, another BES study was conducted on three samples with varying DFs. Samples were converted to hydroxide (OH-- ) form so we could contrast the Br-- conductivity mechanisms to those in a more relevant counter-ion form. After analysis of the electric response of the material, combined with the thermal analysis by TGA, MDSC and DMA, conductivity mechanisms were described. As in the Br-- study, conductivity involves two distinct conduction pathways, sigmaEP and sigmaIP,1. Importantly, we again observed a drop in conductivity at Tdelta in each of these samples, with Tdelta decreasing as the density of functional groups along the hydrophilic block increased. It is undesirable for this transition to occur during operation in a fuel cell or other electrochemical device, so future work to investigate strategies for inhibition are recommended.
机译:阴离子交换膜(AEM)是电化学转化和存储设备(例如阴离子交换膜燃料电池(AAEMFC),碱性聚合物电解质电解槽,氧化还原液流电池和生物电化学设备)的开发人员和研究人员相当感兴趣的。 AEM通常会与更成熟的质子交换膜(PEM)竞争,但是在这些应用中具有降低材料成本和提高燃料灵活性的潜力。 AEM表征技术。有许多合成策略可将促进阴离子传输的阳离子官能团结合到聚合物基质中。在以下章节中将研究两种膜化学。第一种是基于简单的合成程序,该程序生产了一种膜,该膜由具有季铵官能团的无规,交联的聚丙烯-ran-聚乙烯亚胺组成。该膜在95°C时具有0.03 S cm-1的适度氯离子传导性,且吸水率高,尺寸溶胀最小。然而,在合成过程中缺乏对交联位置和密度的控制,产生了一种具有非常随机性质的材料,使其不适合用于更基础的传输研究。第二种化学是具有疏水性和亲水性嵌段的嵌段共聚物。选择疏水性嵌段以提供有利的机械和阻挡特性,而选择亲水性嵌段以提供吸水和阴离子传导功能。麻萨诸塞大学阿默斯特分校的合作伙伴合成了聚(乙烯基苄基三甲基溴化铵)-b-聚甲基丁烯([PVBTMA] [Br] -b-PMB),沿着亲水性嵌段具有不同程度的官能度(DF)的离子交换容量为0.77至2.20 mmol g -1。使用原始的溴化物(Br-)抗衡离子测量了一系列膜的吸水率,面内离子电导率和膜形态。这些块状材料的表征实验表明,这种聚合物结构可产生层状形态,具有适度的吸水率和竞争性的离子电导率(在90°C和95%相对湿度下约为40 mS cm-1)。这些特性使其成为以下离子导电性机理更基础研究的合适候选者。;对一种[PVBTMA] [Br] -b-PMB样品以Br-形式进行了宽带电光谱(BES)并结合分析并在第4章中进行了热稳定性和弛豫实验。我们能够提出两种单独的离子电导率机制,并将每种机制与聚合物结构的物理属性相关。在Tdelta观察到明显的热转变,这导致电导率急剧下降。为了不断表征这些嵌段共聚物膜的离子电导率,对三个具有不同DF的样品进行了另一项BES研究。样品被转换为氢氧化物(OH--)形式,因此我们可以将Br--的电导率机理与更相关的抗衡离子形式进行对比。在分析了材料的电响应之后,结合通过TGA,MDSC和DMA进行的热分析,描述了电导率机理。与Br--研究一样,电导率涉及两个不同的传导途径,即sigmaEP和sigmaIP,1。重要的是,我们再次观察到这些样品中每个样品在Tdelta处的电导率均下降,随着沿着亲水性嵌段的官能团密度增加,Tdelta下降。在燃料电池或其他电化学装置的运行过程中发生这种过渡是不可取的,因此建议今后开展研究抑制策略的工作。

著录项

  • 作者

    Maes, Ashley M.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Chemical engineering.;Materials science.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号