首页> 外文学位 >Elucidating molecular mechanisms of muscle wasting in chronic diseases.
【24h】

Elucidating molecular mechanisms of muscle wasting in chronic diseases.

机译:阐明慢性疾病中肌肉消瘦的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Skeletal muscle represents one of the most abundant tissues in our body that primarily acts as a protein reservoir as well as maintains the structural framework of the body regulating important life processes. Similar to other muscle tissues, skeletal muscle maintains its mass and functionality by balancing the rate of muscle synthesis and degradation. However, disruption of this intricate balance results in debilitating wasting conditions such as myopathies and dystrophies that not only adversely affects skeletal muscle but also promotes whole body catabolism. In several chronic diseases including cancer, sustained muscle wasting eventually culminates in respiratory failure, morbidity and increased mortality with no available therapeutic interventions.; The main goal of my research has been focused on understanding the molecular mechanisms that regulate skeletal muscle wasting in chronic disease states. In cancer mediated muscle wasting, we first utilized a morphological approach to characterize structural changes in a cachectic muscle that eventually lead us to investigate the molecular events that regulate such changes. Using murine models of cancer cachexia as well as clinical samples from cancer patients, these studies have elucidated three main molecular changes in a cachectic muscle. One of the early visible alterations involved membrane abnormalities that were accompanied by the loss and post-translational modifications in the members of a multimeric protein complex known as the dystrophin glycoprotein complex (DGC), mostly implicated in muscular dystrophies. Interestingly, contrary to the commonly accepted notion, the third event in muscle wasting was a highly selective and tightly controlled process. Among the myriad of proteins that comprise skeletal muscle, the core myofibrillar protein, myosin heavy chain was found to be a preferred target of the degradation machinery in cancer cachexia. Taken together, these studies have elucidated a hierarchy of molecular events that precede and in turn regulate muscle turnover in cancer that might be important in designing targeted therapies in the future. Primarily deregulated in response to tumor factors in cancer, DGC function is instead inactivated by mutations in the case of muscular dystrophies. DGC alterations thus served as a commonality between the two myopathies that propelled us to further investigate the molecular mechanisms that regulate muscular dystrophies. One of the signaling networks that is highly activated in muscular dystrophies, in particular, in Duchenne muscular dystrophy (DMD) is the IKK/NF-kappaB signaling pathway. To elucidate the role of the IKK/NF-kappaB signaling in the pathogenesis of DMD, we have utilized conditional mutants as well as pharmacological inhibitors of the IKK signaling pathway in mdx mice, a mouse model of DMD. Our results indicate that NF-kappaB signaling in activated macrophages functions to promote inflammation and muscle necrosis and in skeletal muscle fibers limits the regenerative capacity through the inhibition of muscle progenitor cells.
机译:骨骼肌代表我们体内最丰富的组织之一,主要充当蛋白质储存库,并维持调节重要生命过程的身体结构框架。与其他肌肉组织类似,骨骼肌通过平衡肌肉合成和降解的速度来维持其质量和功能。但是,这种复杂平衡的破坏导致虚弱的衰弱状况,例如肌病和营养不良,不仅不利地影响骨骼肌,而且会促进全身分解代谢。在包括癌症在内的几种慢性疾病中,持续的肌肉消瘦最终导致呼吸衰竭,发病率和死亡率增加,而没有可用的治疗干预措施。我研究的主要目标集中在了解调节慢性疾病状态下骨骼肌消瘦的分子机制。在癌症介导的肌肉消瘦中,我们首先采用形态学方法表征恶病质肌肉的结构变化,最终导致我们研究调节这种变化的分子事件。这些研究使用癌症恶病质的鼠模型以及来自癌症患者的临床样本,阐明了恶病质肌中的三个主要分子变化。早期可见的变化之一是膜异常,伴随着称为肌营养不良蛋白糖蛋白复合物(DGC)的多聚体蛋白复合物成员的丢失和翻译后修饰,其中多数与肌肉营养不良有关。有趣的是,与普遍接受的观念相反,肌肉消瘦中的第三件事是高度选择性和严格控制的过程。在构成骨骼肌的无数蛋白质(核心肌纤维蛋白)中,肌球蛋白重链被发现是癌症恶病质降解机制的首选靶标。综上所述,这些研究阐明了之前发生的分子事件的层次结构,并进而调节了癌症中的肌肉更新,这可能对将来设计靶向治疗很重要。最初由于对癌症中的肿瘤因素的反应而失调,但在肌肉营养不良的情况下,DGC功能却因突变而失活。因此,DGC改变是两个肌病之间的共同点,这促使我们进一步研究调节肌肉营养不良的分子机制。 IKK / NF-kappaB信号通路是在肌营养不良症(尤其是在杜兴氏肌营养不良症(DMD))中高度激活的信号传递网络之一。为了阐明IKK / NF-kappaB信号在DMD发病机理中的作用,我们在mdx小鼠(DMD的小鼠模型)中利用了IKK信号通路的条件突变体和药理抑制剂。我们的结果表明,活化巨噬细胞中的NF-κB信号传导可促进炎症和肌肉坏死,而骨骼肌纤维中的NF-κB信号通过抑制肌肉祖细胞来限制再生能力。

著录项

  • 作者

    Acharyya, Swarnali.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biology Genetics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号