首页> 外文学位 >Liquid state physics of the magnesium oxide-silicon dioxide system at deep mantle pressures.
【24h】

Liquid state physics of the magnesium oxide-silicon dioxide system at deep mantle pressures.

机译:氧化镁-二氧化硅系统在深地幔压力下的液态物理学。

获取原文
获取原文并翻译 | 示例

摘要

As the primary medium through which planetary differentiation occurs, silicate liquids have a central role in the study of the thermal and chemical evolution of Earth. First principles molecular dynamics simulations were used to study the liquid state physics of the MgO-SiO2 join. We find the structure of liquids to vary continuously upon compression, and to differ markedly from that of the respective isochemical crystalline polymorphs. Liquid structure also depends strongly on composition, with a further notable difference between the structure of magnesio-silicate liquids and that of pure silica. Liquid structure is expressed in the liquid state thermodynamic properties. A density crossover along the forsterite melting curve is found within the stability field of the mineral, a feature which a melting curve computed through the Lindemann criterion from the mean squared atomic displacements in forsterite is unable to reproduce. Composition dependent structural differences within the liquid are expressed as a liquid immiscibility field at low pressure in high silica compositions. We develop a self-consistent thermodynamic description of liquid state thermodynamics relevant to silicate liquids over a large range of pressures and temperatures. To constrain the description, we use simulation results for liquid MgO, MgSiO3, Mg2SiO4 and SiO2, including the thermal electronic contribution to the free energy. With liquid state thermodynamics constrained self-consistently, we investigate the high pressure melting of MgO periclase and MgSiO3 perovskite, with special focus on the changes in density and sound velocity which would be expected during shock melting of periclase and enstatite. We further apply the thermodynamic description to the thermodynamics of mixing along the full extent of the binary. At low pressure the enthalpy of mixing is notably pressure dependent, primarily due to the disappearance of a maximum at high silica compositions with pressure. The assumption of pressure independence in the enthalpy of mixing, with the implication of ideal mixing of liquid volumes, commonly applied in experimental thermodynamic studies is thus found not to hold at low pressures for liquids in the MgO-SiO 2 system. Liquid immiscibility, and its disappearance with pressure, is found to result from significant differences between SiO2 and intermediate composition liquids in liquid structure and its response to compression.
机译:作为发生行星分化的主要媒介,硅酸盐液体在研究地球热化学演化过程中起着核心作用。第一原理分子动力学模拟被用来研究MgO-SiO2连接的液态物理。我们发现液体的结构在压缩后会连续变化,并且与各个等化学结晶多晶型物的结构明显不同。液体结构还强烈取决于组成,镁硅酸盐液体的结构与纯二氧化硅的结构之间还存在显着差异。液体结构以液态的热力学性质表示。在矿物的稳定性场中发现了沿镁橄榄石熔融曲线的密度交叉,该特征无法通过林德曼标准从镁橄榄石中均方根原子位移计算出的熔融曲线。液体中取决于组分的结构差异表示为高二氧化硅组合物在低压下的液体不溶混性场。我们开发了在较大压力和温度范围内与硅酸盐液体有关的液态热力学的自洽热力学描述。为了限制描述,我们使用了液态MgO,MgSiO3,Mg2SiO4和SiO2的模拟结果,包括热电子对自由能的贡献。在液态热力学自洽约束的情况下,我们研究了MgO镁长石和MgSiO3钙钛矿的高压熔融,特别关注密度和声速的变化,而密度和声速的变化是在钙长石和顽辉石的冲击熔融过程中预期的。我们进一步将热力学描述应用于沿整个二元范围的混合热力学。在低压下,混合的焓显着地取决于压力,这主要是由于高二氧化硅组合物在压力下最大值的消失所致。因此,发现通常在实验热力学研究中使用的,在混合焓中具有压力无关性的假设以及对液体体积进行理想混合的假设对于MgO-SiO 2系统中的液体在低压下并不成立。发现液体的不溶混性及其在压力下的消失是由于SiO2和中间组成的液体在液体结构中的显着差异及其对压缩的响应所致。

著录项

  • 作者

    de Koker, Nico Pieter Jan.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Geophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号