首页> 外文学位 >High frequency Faraday rotation observations of the solar corona.
【24h】

High frequency Faraday rotation observations of the solar corona.

机译:日冕的高频法拉第旋转观测。

获取原文
获取原文并翻译 | 示例

摘要

The million degree solar corona generates the solar wind that in turn controls the Earth's "space weather". The solar coronal magnetic field within 0.25AU (60 solar radii) plays a critical role in the acceleration but is largely "invisible", and can presently only be measured by the Faraday rotation of high frequency electromagnetic radiation. Faraday rotation is the observed rotation in the plane of polarization of an EM wave as it traverses a magnetized medium. The amount of observed Faraday rotation is the integration along the propagation direction of the product of the component of the magnetic field parallel to the propagation vector and the electron density.;Faraday rotation is clearly useful for measuring the solar coronal magnetic field. As a remote observation, Faraday rotation measurements require careful consideration of the medium in the analysis. This thesis details the theory of Faraday rotation, previous experiments observing Faraday rotation using the carrier signal from a spacecraft in superior conjunction, the equipment used for the Cassini Faraday rotation observations, the signal analysis and steps taken to acquire a Faraday rotation observation from radio frequency data, the model used to fit the observations, all ancillary data required for these steps, and all the code created for this purpose. The data and code are provided in the attached DVD media.;All previous Faraday rotation experiments observed coronal mass ejections (CMEs) producing either 'W' or sigmoid features. These observations are reproduced herein using a Taylor-state flux-rope model crossing the line of sight at different sizes, twist, and orientations, showing that Faraday rotation can be used to measure the magnetic field of CMEs.;Using a forward model to fit Faraday rotation and columnar electron density observations, a first order investigation into force balance in the solar corona was conducted. From these fits, the gradients in the magnetic and thermal pressure and the gravitational force per volume were calculated. For the solar wind to escape the gravitational force of the Sun, the magnetic and thermal pressure gradients must dominate. We show from the fits on 2002 June 20 that small adjustments to the PFSS model can provide the necessary magnetic field strengths to supply the needed pressure for solar wind flow; however, the fits from June 21st cannot. The closest approach of the June 21st measurements were all below the source surface of 2.5 solar radii indicating a problem in the use of the PFSS model to determine the structure of the coronal magnetic field below the source surface.;Large amplitude 4 minute period Alfven waves have been observed in Helios and Cassini Faraday rotation observations. Using a simple open-ended box model through which magnetohydrodynamic waves can propagate, it is demonstrated that the combination of Faraday rotation and columnar electron density observations can distinguish Alfven waves due to their lack of fluid perturbation. It is also shown that the 2nd harmonic in the Faraday rotation observations is the result of the electron density fluctuation in the magnetosonic (fast and slow) modes. This demonstrates that previous Helios observations producing the 2nd harmonic were MHD magnetosonic waves. Cassini's observation of an Alfven wave is modeled to determine the amplitude of the magnetic perturbation. If we assume that these waves are continuously generated in all directions then the wave energy flux is 1.6 x 1019W; for comparison, the kinetic energy flux of the solar wind at 1AU is 1.7 x 1020W.;With better technology and the maturity of 3D tomography, the solar radioscience community is experiencing a resurgence of interest in the phenomenon of Faraday rotation. This thesis demonstrates that Faraday rotation can be used to determine the magnetic structure of CMEs, the solar wind, and MHD waves propagating from the solar corona. These observations enable us to predict the geoeffectiveness of a CME, study force balance in the solar wind, and measure magnetic energy flux in important regions such as the solar wind acceleration region.
机译:百万度的日冕产生太阳风,进而控制地球的“太空天气”。 0.25AU(60太阳半径)内的太阳日冕磁场在加速中起着关键作用,但在很大程度上是“不可见的”,目前只能通过高频电磁辐射的法拉第旋转来测量。法拉第旋转是在电磁波横穿磁化介质时在其极化平面内观察到的旋转。观察到的法拉第旋转量是沿着与传播矢量平行的磁场分量与电子密度的乘积沿着传播方向的积分。法拉第旋转显然可用于测量太阳日冕磁场。作为远程观察,法拉第旋转测量需要在分析中仔细考虑介质。本论文详细介绍了法拉第旋转的理论,先前使用航天器的载波信号观测法拉第旋转的实验,用于卡西尼号法拉第旋转观测的设备,信号分析以及从射频获取法拉第旋转观测所采取的步骤数据,用于拟合观测值的模型,这些步骤所需的所有辅助数据,以及为此目的创建的所有代码。数据和代码在随附的DVD介质中提供。;所有先前的法拉第旋转实验均观察到产生“ W”或S形特征的冠状物质抛射(CME)。这些观察结果在本文中使用泰勒状态磁通绳模型在不同尺寸,扭曲和方向上越过视线重现,表明法拉第旋转可用于测量CME的磁场。;使用正向模型拟合通过法拉第旋转和柱状电子密度观测,对太阳日冕中的力平衡进行了一级研究。从这些拟合中,计算出磁和热压力的梯度以及每体积的重力。为了使太阳风摆脱太阳的引力,必须要控制磁力和热压力梯度。从2002年6月20日的拟合中我们可以看出,对PFSS模型进行小的调整可以提供必要的磁场强度,从而为太阳风提供所需的压力。但是,从6月21日开始的拟合不能。 6月21日最接近的测量方法都是在2.5太阳半径的辐射源表面以下,这表明在使用PFSS模型确定辐射源表面以下的日冕磁场的结构时存在问题;大振幅4分钟周期的Alfven波在Helios和Cassini Faraday旋转观测中已经观察到了。使用一个简单的开放式盒子模型,通过该模型可以传播磁流体动力波,证明法拉第旋转和柱状电子密度观测值的组合可以区分Alfven波,因为它们缺乏流体扰动。还表明,法拉第旋转观测中的二次谐波是磁声(快和慢)模式下电子密度波动的结果。这表明先前产生第二谐波的Helios观测是MHD磁声波。卡西尼号对Alfven波的观察被建模以确定磁扰动的幅度。如果我们假设这些波是在各个方向连续产生的,那么波的能量通量为1.6 x 1019W;为了进行比较,太阳风在1AU处的动能通量为1.7 x 1020W。随着技术的进步和3D层析成像技术的成熟,太阳放射科学界对法拉第旋转现象的兴趣正重新兴起。本文证明法拉第旋转可以用来确定CMEs的磁结构,太阳风和从太阳日冕传播的MHD波。这些观察结果使我们能够预测CME的地球有效性,研究太阳风中的力平衡,并测量重要区域(例如太阳风加速区域)中的磁通量。

著录项

  • 作者

    Jensen, Elizabeth Annah.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics Astronomy and Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号