首页> 外文学位 >Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology.
【24h】

Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology.

机译:复杂网络的推理,仿真,建模和分析,尤其是系统生物学中的复杂网络。

获取原文
获取原文并翻译 | 示例

摘要

Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts.;There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people.;By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject.;The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy.;Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise.;Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
机译:在从物理学到生物学,社会学和经济学的各个领域中,过去十年的技术进步已经导致高度复杂的系统上的数据出现了前所未有的爆炸式增长,该系统具有成千上万个(甚至数百万个)相互作用的组件。这些系统存在于规模和复杂性的许多规模,并且越来越明显的是,它们实际上是通用的,出现在每个研究领域。此外,它们具有基本特性-其中主要的一点是,可能容易理解其组成部分的各个相互作用,但是这些相互作用的汇合所产生的特征行为-由这些复杂的网络-无法预测。 ;简而言之,整体不仅仅是其各个部分的总和。也许没有比生物学科学中有关复杂网络的发现更好地说明这一概念。特别是,尽管2003年对人类基因组的测序是一项了不起的成就,但科学家们了解到,人类的“细胞水平蓝图”是细胞水平的零件清单,但他们(没有明确地说)关于细胞水平的过程。 。现代分子生物学所面临的挑战是要根据零件的网络来理解这些过程,即蛋白质,酶,基因和代谢产物之间的相互作用,因为正是这些过程最终将有生命和无生命区别开来,产生生命!系统生物学的目标-从分子生物学到流行病学囊括社会系统中的一切-涵盖整个领域-通过核心生物学部分的基本网络(无论是蛋白质还是人)来理解过程;事实上,实际上有无数的复杂系统,更不用说用于推断,模拟,分析和建模这些系统的工具和技术了,不可能真正全面地介绍复杂系统的历史和研究。作者自己的出版物为网络生物学,乃至网络科学领域更大的工作领域贡献了网络推论,仿真,建模和分析方法。因此,本论文的目的是双重的:在网络科学的历史背景下展示这一原创作品,同时也为复杂系统(在系统生物学中强调复杂网络)及其工具和技术提供了足够的回顾和参考。推理,仿真,分析和建模,使读者可以轻松地寻找有关该主题的更多信息。类似于本评论的第1、2和4章旨在传达网络科学与网络知识的共同发展。随着对各种系统的研究和比较揭示了这些系统的共享特性,学术界各学科之间的界限缓慢而明显地崩溃了。希望作者的这些章节能使人们对复杂系统研究取得显着而迅速的进步有所了解,从而促成这种前所未有的学术协同作用。第3章和第5章详细介绍了作者在复杂系统研究背景下的原始工作。第三章介绍了一个两阶段建模过程的方法和结果,该过程从实验获得的,但数学上不确定的微芯片阵列数据中生成了枯草芽孢杆菌的候选基因调控网络。然后从图论的角度分析这些网络,并通过将网络的图论理论性质与其他生物系统的图论性质进行比较来评判它们的生物学可行性。拓扑摄动分析的结果揭示了在多个复杂度级别上行为的共性,并且被证明是确定网络推理过程对噪声具有鲁棒性的复杂度级别的一种宝贵手段。第5章概述一种学习算法,用于开发将疾病引入其中的现实的,不断发展的社交网络(城市)。将跨越两个数量级的人群的模拟结果与英格兰和威尔士的疫苗接种前麻疹数据进行了比较,证明了该模拟能够捕获10,000人以下人群中流行病的定量和定性特征。第5章介绍的工作验证了网络仿真在同时探测接触网络动态和疾病动态方面的实用性。

著录项

  • 作者

    Christensen, Claire Petra.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics Condensed Matter.;Biophysics General.;Health Sciences Epidemiology.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:39:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号